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Abstract
An analysis of front dynamics in discrete time and spatially extended systems
with general bistable nonlinearity is presented. The spatial coupling is given
by the convolution with distribution functions. It allows us to treat in a unified
way discrete, continuous or partly discrete and partly continuous diffusive
interactions. We prove the existence of fronts and the uniqueness of their
velocity. We also prove that the front velocity depends continuously on the
parameters of the system. Finally, we show that every initial configuration that
is an interface between the stable phases propagates asymptotically with the
front velocity.

Mathematics Subject Classification: 37L99, 39B22, 46T20

1. Systems of bistable maps coupled by convolutions

Fronts between two stable phases is a widespread phenomenon in spatially extended systems.
Such nonlinear waves are believed to emerge in the presence of a bistable nonlinearity and a
diffusive coupling. In particular, they should manifest themselves independently of the discrete
or continuous nature of time in the system, and independently of the discrete or continuous
nature of the spatial coupling. From the mathematical point of view, the existence of fronts and
related properties were analysed separately in continuous time and in discrete time systems.
Most studies have considered the continuous case.

In continuous time models (i.e. differential equations), the first results on the existence
of fronts were obtained for the Fisher–Kolmogorov PDE (see [9] and references therein).
The results were extended to other continuous time systems with continuous spatial coupling
[3]. In particular, we mention the case of integro-differential equations with interaction given
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by the convolution with an absolutely continuous function [1]. These questions were also
addressed in models with discrete coupling (i.e. in lattices of coupled ODEs). The existence
of a pinning effect, namely the structural stability of fronts with zero velocity, was one of the
first mathematical results obtained for such systems [11]. Recently, the existence of fronts
and the uniqueness of their velocity were proved in coupled ODEs with finite-range nonlinear
coupling [14].

In discrete time systems, the existence of fronts and the uniqueness of their velocity
were proved in the case where the bistable nonlinearity is piecewise affine [4, 7]. For discrete
couplings (i.e. for coupled map lattices [10]), mode-locking of the front velocity in the
parameter space was proved. In particular, a pinning effect was obtained that corresponds
to the plateau of zero velocity. Despite these results for piecewise affine systems, an analysis
of front dynamics in discrete time systems with general nonlinearity and general coupling has
not been done, to the best of our knowledge.

In this paper, we consider discrete time systems with arbitrary nonlinearity. The couplings
are given by the convolution with distribution functions as introduced in [7]. In a first step, we
present a detailed analysis for systems based on a unique nonlinearity and a unique distribution
function (sections 2–4). In a second step (section 5), the results are extended to systems that are
convex linear combinations of systems of the previous type. Since the arguments are similar
to those in sections 2–4, section 5 is less formal and we only present sketches of the proofs.

For all these systems, we prove the existence of fronts and the uniqueness of their velocity
(theorem 1.1 and statement 1 of theorem 5.1). Contrary to the case of continuous time systems,
the uniqueness of front shape does not hold generally. As a consequence, Lyapunov stability
of fronts may only be shown locally in phase space. Instead of considering this property, we
define a weaker property that we prove to be global in the set of initial conditions with interfacial
profile: the existence and uniqueness of the velocities of subsequent orbits (theorem 1.3 and
statement 3 in theorem 5.1).

The choice of convolution couplings allows us to include, in a unified framework, systems
with discrete couplings and those with continuous coupling. The first are obtained when
choosing a lattice distribution function. The system then reduces to a coupled map lattice.
The second are discrete time analogues of continuous time systems with continuous integral
couplings such as in [8]. In addition, convolution couplings allow one to represent systems
where the interaction is partly discrete and partly continuous. Such interactions are obtained
for distribution functions that are a convex combination of a discrete distribution function and
a continuous distribution function.

Furthermore, by enlarging gradually the set of points involved in the interaction, one can
study front dynamics changes when the coupling varies from a discrete to a continuous one.
This is achieved by considering a sequence of distribution functions converging in Hausdorff
topology. In particular, theorem 1.2 below implies that the front velocity changes continuously
in this case. Stated otherwise, sufficiently small errors in the choice of the interaction result
in arbitrarily small errors in the front velocity.

Finally, the present analysis gives results for the planar front dynamics in multidimensional
coupled map lattices. Multidimensional coupled map lattices are discrete time systems on
configurations over Z

d . Their dynamics is generated by the composition of a bistable interval
map and a diffusive coupling [10]. As shown in section 5.3 of [7], the dynamics of planar
fronts is governed by a system of bistable maps coupled by convolutions. The corresponding
distribution function is a step function whose discontinuities depend on the planar front
direction. By applying theorem 1.1 to such systems, the existence of planar fronts and the
uniqueness of their velocity are deduced. Moreover, theorem 1.2 implies that the planar front
velocity depends continuously on the front direction.



Systems of bistable maps coupled via convolutions 25

1.1. Definitions

The phase space is the set B of Borel-measurable functions defined on R with values in [0, 1].
The notation ‖ · ‖ always means the supremum norm, and applies either to elements in B or to
functions defined on finite intervals.

Diffusive couplings. In order to introduce convolutions, we recall that a distribution function,
say h, is a right continuous increasing function defined on R such that h(−∞) = 0 and
h(+∞) = 1. The simplest distribution function is the Heaviside function, H .

H(x) =
{

0 if x < 0,

1 if 0 � x.

The translation by v ∈ R is the operator acting on B defined by T vu(x) = u(x − v) for all
x ∈ R. A distribution function h is said to be degenerate if h = T vH for some v ∈ R.

Given u ∈ B, the convolution h ∗ u with the distribution function h is (well-)defined by
the Lebesgue–Stieltjes integral,

h ∗ u(x) =
∫

R

u(x − y) dh(y), x ∈ R

and keeps B invariant.
The convolution with h, viewed as an operator acting on B, is linear and continuous. More

precisely, ‖h ∗ u‖ � ‖u‖ for every u ∈ B. Furthermore, it has three basic properties [7].

• The first property is positivity: if u is a non-negative function, then h ∗ u is also non-
negative.

• The second property is homogeneity, namely commutation with translations: h ∗ T vu =
T vh ∗ u for every u ∈ B and v ∈ R.

In order to state the third property, we introduce the symbol limn→∞ un = u, which
denotes the pointwise convergence of the sequence of functions {un}. It means that
limn→∞ un(x) = u(x) for all x ∈ R if one deals with functions in B or for all x ∈ [0, 1]
if one deals with functions of the interval.

• The third property is s-homogeneity. An operator on B is s-homogeneous iff it is
homogeneous and commutes with the pointwise limit of sequences in B: if un ∈ B is
such that limn→∞ un = u, then limn→∞ h ∗ un = h ∗ u.

The condition of being s-homogeneous is necessary and sufficient for a bounded linear
operator acting on Borel-measurable functions to be a convolution with a distribution
function (see [7]).

We shall often use the projection P� (respectively Pr ) on left continuous (respectively right
continuous) functions. This operator is defined for every increasing function u as follows:

P�u(x) = lim
y→x
y<x

u(y) (respectively Pru(x) = lim
y→x
y>x

u(y)), x ∈ R.

The s-homogeneity implies that every convolution commutes with P� (respectively Pr ).
Finally, given a distribution function h, we denote by h∗n the n-fold convolution defined by

h∗0 = H and h∗(n+1) = h∗n ∗ h, n ∈ N.

We shall need other properties of convolutions as well as results on the convergence of
sequences of increasing functions. All these results are stated and proved in appendices A
and B.

As mentioned in the introduction, the advantage of dealing with convolutions is that the
structure of the underlying space where the diffusion acts depends on h, specifically on its
support, i.e. the set of growth points of h (see examples later).
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Bistable maps. The coupling being defined, we introduce the local map which plays the
role of a local force. This map is a bistable map, that is to say a continuous increasing map
f : [0, 1] → [0, 1] such that there exists c ∈ (0, 1) so that f (x) < x for all x ∈ (0, c) and
x < f (x) for all x ∈ (c, 1).

This definition implies that the points 0 and 1 are stable fixed points and that c is an
unstable fixed point.

A bistable map is said to be regular if there exists δ > 0 so that |f (x) − f (y)| � |x − y|
for all x, y ∈ (0, δ) and for all x, y ∈ (1 − δ, 1).

The dynamical system. Given a distribution function h and a bistable map f (whose unstable
fixed point is always denoted by c in what follows), we consider the dynamical system (B, F )

where F is defined by

Fu = h ∗ f ◦ u, u ∈ B
and is denoted by h ∗ f . This map F is well-defined and keeps B invariant. So, the orbits
{ut }t∈N where ut+1 = Fut and u0 ∈ B are well-defined.

The main properties of the dynamics are the following. Consider the following usual
partial order in B: given two functions u, u′ ∈ B, we say that u � u′ if u(x) � u′(x) for all
x ∈ R. Positivity of the convolution with h and monotony of f imply monotony of F ; namely,
if u � u′, then Fu � Fu′. Moreover, s-homogeneity of the convolution and continuity of f

imply s-homogeneity of F . In particular, F commutes with both P� and Pr .

Examples: Coupled map lattices. Consider a lattice distribution function, that is to say, the
distribution function h, defined by

h(x) =
∑
n∈Z
n�x

�n,

where all �n � 0 and
∑

n∈Z
�n = 1. In this case, the map F is Fu(x) = ∑

n∈Z
�nf ◦ u(x − n)

and we actually have a dynamics on the lattice Z. This model is called a coupled map
lattice [10].

Integral formulation of the classical diffusion. Consider the absolutely continuous distribution
function with the heat kernel

h(x) =
∫ x

−∞
e−πy2

dy, x ∈ R.

The map Fu(x) = (h ∗ f ◦u)(x) = ∫
R

f ◦ u(x − y)e−πy2
dy gives an integral formulation of

a reaction–diffusion process in discrete time.

1.2. Results on the dynamics of fronts

We are interested in particular orbits of (B, F ), namely fronts. A front is a travelling wave
whose shape is an interface between the stable points 0 and 1. Specifically, a front of velocity
v is an orbit {ut }t∈N such that

ut (x) = φ(x − vt), x ∈ R, t ∈ N,

where the shape φ is a distribution function. There exist fronts of velocity v iff there exists
a distribution function φ that is a solution of the front equation Fφ = T vφ. Note that the
right continuity of φ is arbitrary. Indeed, by s-homogeneity, the existence of fronts with left
continuous shape is equivalent to the existence of fronts with right continuous shape.
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Proceeding to the analysis of the front equation, we obtain the following results on the
existence of fronts and the uniqueness of their velocity.

Theorem 1.1. For any distribution function h and any bistable map f , the map F = h ∗ f

has fronts of velocity v for some v ∈ R. In addition, if f is regular, then this velocity is unique.

Assume that f is regular and let v(f, h) be the unique front velocity of h ∗ f . The
next theorem tells us that this velocity depends continuously on the coupling and on the local
map. In order to make this statement, we need the following distance in the set of distribution
functions (which is equivalent to the Hausdorff distance restricted to graphs of such functions)
[7]. Given two distribution functions h and h′, let

d(h, h′) = inf{ε > 0 : h(x − ε) − ε � h′(x) � h(x + ε) + ε, ∀x ∈ R}.
The convergence with respect to this distance coincides with the usual convergence of
distribution functions (see lemma B.3).

Theorem 1.2. Let {fn}n∈N be a sequence of regular bistable maps that converges pointwise
to a bistable regular map f . Let {hn}n∈N be a sequence of distribution functions and h be a
distribution function such that limn→∞ d(hn, h) = 0. Then limn→∞ v(fn, hn) = v(f, h).

Moreover, not only does the front velocity depend continuously on the local map with 0
and 1 as stable fixed points, but it also depends continuously on the location of these fixed
points. Indeed, in theorem 1.2, one can assume that the stable fixed points of fn are an and bn.
(By a linear change of variable, one can extend theorem 1.1 to maps F for which the stable
fixed points of f are any real numbers a and b.) Then, for the pointwise convergence to
be meaningful, one defines the map f and all the fn on the interval [infn∈N an, supn∈N

bn]
by extending these functions, when necessary, to a constant function outside their original
definition interval.

Once the existence of fronts has been established, their asymptotic stability can be
analysed. In continuous time systems with continuous couplings, fronts were proved to be
globally stable [3, 9]. In such systems, their shape is unique up to translations and every orbit
with interfacial initial condition approaches asymptotically such a travelling wave.

In discrete time systems, the global stability of fronts may hold, but is not a generic
property. Indeed, in some systems, for a large set of parameters, the stability of fronts was
shown to hold only locally in phase space [6]. One reason is the existence of several front
shapes (not identifiable by applying translations). Another reason is the existence of quasi-
fronts. Quasi-fronts are orbits obtained by iterating distribution functions that are solutions of
the equation Fnφ = T nvφ for some n > 1 but not for n = 1. When quasi-fronts exist, fronts
are not globally stable.

In the short term, in discrete time systems, depending on the parameters, the asymptotic
stability of fronts may be global or only local. Nevertheless, one can prove a kind of stability
that is global and valid in all cases, namely the existence and the uniqueness of the velocities
of interfacial orbits.

Recall that c denotes the unstable fixed point of f . An interface is a function u ∈ B such
that there exist c− ∈ (0, c), c+ ∈ (c, 1) and j1 � j2 ∈ R so that u(x) � c− if x � j1 and
u(x) � c+ if x � j2. Note that, in part of the literature (see, e.g., [4, 5]), the term interface
has a slightly different meaning and denotes the region of transition between the stable phases,
namely the interval [j1, j2] in our definition.

Given u ∈ B and a number a ∈ (0, 1), consider the quantity (which may be infinite)

Ja(u) = inf{x ∈ R : u(x) � a}.
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One can show that the image under F of every interface is an interface and that for any
a ∈ (0, 1), the quantity Ja(F

tu) is a finite number for sufficiently large t (see beginning of
section 4.4). Our last main result states that even though an interfacial orbit may not approach
a front, it has asymptotically the front velocity.

Theorem 1.3. Let h be a distribution function and let f be a regular bistable map. For every
interface u and every a ∈ (0, 1), we have

lim
t→∞

Ja(F
tu)

t
= v(f, h).

As stated in the introduction, the results of this section are extended to more general
models in section 5.

2. Sub-fronts and their properties

2.1. Definitions

Let I ⊂ B be the subset of increasing functions. The set of sub-fronts of velocity v is defined
as follows: given v ∈ R and c+ ∈ (c, 1), let Sv,c+ be defined as

Sv,c+ = {ψ ∈ I : Fψ � T vψ and Jc+(ψ) = 0}.
A first result indicates that this definition is meaningful.

Lemma 2.1.

(1) There exists v ∈ R such that, for every c+ ∈ (c, 1), the set Sv,c+ is not empty.
(2) For every ψ ∈ Sv,c+ , we have ψ(−∞) � c and ψ(+∞) = 1.

Proof. (1) Given c− ∈ (0, c), let the function ψc− be defined as ψc− = c− + (1 − c−)H . This
function belongs to I. So does Fψc− since F maps increasing functions into increasing
functions. Consequently, the limit Fψc−(−∞) exists and by s-homogeneity, we have
Fψc−(−∞) = f (c−) < c−. Therefore, there exists v ∈ R such that Fψc− � T vψc− . In
addition, Jc+(ψc−) = 0 for every c+ ∈ (c, 1) and the statement follows.

(2) The property T −vFψ � ψ implies the inequality T −vFψ(−∞) � ψ(−∞). By
s-homogeneity, we have T −vFψ(−∞) = f (ψ(−∞)). Consequently, f (ψ(−∞)) �
ψ(−∞) and ψ(−∞) < c+ < 1. According to the definition of f , we conclude that
ψ(−∞) � c.

Similarly, one can show that f (ψ(+∞)) � ψ(+∞). The condition ψ(+∞) � c+ > c

imposes ψ(+∞) = 1. �
The second statement of this lemma shows that the quantity

v̄ = sup{v ∈ R : Sv,c+ 
= ∅}
does not depend on c+, provided that the latter belongs to (c, 1). The first statement shows that
v̄ > −∞. In order to obtain more results, we are going to consider the minimal function in Sv,c+ .

2.2. Properties of sub-fronts

Given v ∈ R and c+ ∈ (c, 1), assume that Sv,c+ is non-empty. We define the function ηv,c+ by

ηv,c+(x) = inf
ψ∈Sv,c+

ψ(x), x ∈ R.

This function will be the starting point of the front shape construction. Its main properties are
given in the following statement.
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Lemma 2.2. Let c+ ∈ (c, 1).

(1) If Sv,c+ 
= ∅, then ηv,c+ ∈ Sv,c+ .
(2) If Sv2,c+ 
= ∅ and if v1 < v2, then Sv1,c+ 
= ∅ and ηv1,c+ � ηv2,c+ .
(3) v̄ < +∞ and Sv̄,c+ 
= ∅.

Proof. (1) Let x < y ∈ R and ε > 0. There exists ψ ∈ Sv,c+ such that

ηv,c+(x) − ε � ψ(x) − ε � ψ(y) − ε � ηv,c+(y).

Since ε is arbitrary, it follows that ηv,c+(x) � ηv,c+(y) for all x < y and consequently ηv,c+ ∈ I.
For every ψ ∈ Sv,c+ , we have ηv,c+ � ψ and then by monotony T −vFηv,c+ � T −vFψ �

ψ . Since ψ is arbitrary, we conclude that T −vFηv,c+ � ηv,c+ .
Finally, let x > 0 and ε > 0. There exists ψ ∈ Sv,c+ such that

ηv,c+(−x) � ψ(−x) < c+ and ψ(x) − ε � ηv,c+(x).

Since ε is arbitrary, we conclude that ηv,c+(−x) < c+ � ηv,c+(x) for all x > 0, which implies
that Jc+(ηv,c+) = 0. The first statement is proved.

(2) By monotony, we have T −v1Fηv2,c+ � T −v2Fηv2,c+ , which implies, since ηv2,c+ ∈
Sv2,c+ , the inequality T −v1Fηv2,c+ � ηv2,c+ . Therefore, ηv2,c+ belongs to Sv1,c+ and by definition,
we have ηv1,c+ � ηv2,c+ .

(3) We prove that v̄ < +∞ by contradiction. Assume that Sn,c+ is not empty for all n ∈ N.
Then the previous statement and the monotony of F imply that Fη0,c+ � T nηn,c+ for all n ∈ N.

Lemma 2.1 tells us that η0,c+(+∞) = 1. The same property holds for Fη0,c+ by
s-homogeneity. Hence there exists xc+ ∈ R such that Fη0,c+(xc+) > c+. But since
Jc+(ηn,c+) = 0, we have ηn,c+(xc+ − n) < c+ for n > xc+ and hence a contradiction.

It remains to be proved that Sv̄,c+ is not empty. The s-homogeneity implies that

Fη = lim
v→v̄
v<v̄

Fηv,c+ where η = lim
v→v̄
v<v̄

ηv,c+ .

The existence of the second limit is ensured by the monotony of ηv,c+ with v.
Applying lemma B.1, we obtain

lim
v→v̄
v<v̄

T −vFηv,c+(x) = T −v̄F η(x)

for all x where T −v̄F η is continuous. Consequently, the inequality T −v̄F η(x) � η(x) holds
for such points. These points form a dense subset of R because Fη is an increasing function.
By s-homogeneity, we conclude that T −v̄FP�η � P�η. By taking the limit x → −∞,
we obtain f (η(−∞)) � η(−∞). Since η(x) � c+ < 1 for all x < 0, it follows that
η(−∞) � c. On the other hand, η(x) � c+ for all x > 0. We conclude that Jc+(η) ∈ R and
T −Jc+ (η)P�η ∈ Sv̄,c+ . �

2.3. Sub-fronts and super-fronts

In the construction of fronts, we shall need other sub-fronts, namely increasing functions from
R to [c, 1]. These solutions belong to the set Dv,c+ = {ψ ∈ Sv,c+ : ψ(−∞) = c}. The
arguments of the proof of the second statement of lemma 2.1 show that any ψ ∈ Dv,c+ satisfies
ψ(−∞) = c and ψ(+∞) = 1. Consequently, the quantity

v̄s = sup{v ∈ R : Dv,c+ 
= ∅}
does not depend on c+, provided that the latter belongs to (c, 1), and since Dv,c+ ⊂ Sv,c+ , we
have v̄s � v̄. As we shall see in proposition 3.3, it may happen that v̄s = −∞.
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In addition to sub-fronts, we introduce increasing functions from R to [0, c] which are
super-fronts. Given c− ∈ (0, c) and v ∈ R, consider the set

Ev,c− = {ψ ∈ I : T vψ � Fψ, Jc−(ψ) = 0 and ψ(+∞) = c}.
An analysis similar to the one done for sub-fronts shows that the quantity

v̄i = inf{v ∈ R : Ev,c− 
= ∅}
does not depend on c−, provided that the latter belongs to (0, c) and we have v̄i > −∞.

These velocities satisfy the following inequality.

Lemma 2.3. Given a non-degenerate distribution function h and a bistable map f , we have
v̄s < v̄i .

In the proof of theorem 1.2, we shall see that v̄s = v̄i when h is degenerate.

Proof. We suppose that both v̄s and v̄i are finite. Otherwise the result follows trivially from
the inequalities v̄s < +∞ and v̄i > −∞. By using arguments similar to those in the proof of
lemma 2.2, one proves the existence of a function ψ ∈ Dv̄s ,c+ . Since ψ is above c, we have
ψ � f ◦ψ and then hv̄s

∗ψ � ψ , where hv̄s
= T −v̄s h. Statement 1 of lemma A.3 then implies

that limn→∞ h∗n
v̄s

= 0.
Similarly, one proves the existence of ϕ ∈ Ev̄i ,c− and we have ϕ � hv̄i

∗ ϕ, where
hv̄i

= T −v̄i h. Statement 2 of lemma A.3 then implies that limn→∞ h∗n
v̄i

= 1.
The distinct limits of n-fold convolutions imply that v̄s 
= v̄i . If we assume that v̄i < v̄s ,

the monotony of h gives h∗n
v̄i

� h∗n
v̄s

, which is in contradiction with the previous limits of n-fold
convolutions. �

3. Construction of fronts

3.1. General construction

Using minimal sub-fronts, we can now construct increasing solutions of the front equation.
Functions resulting from this construction may be above c. But, as we shall see, this situation
can be prevented and we have the following condition for the existence of fronts.

Theorem 3.1. Let h be a distribution function and let f be a bistable map. If v̄s < v̄ then the
map F has fronts of velocity v̄.

Before starting the proof, we present an auxiliary result.

Lemma 3.2. Let {αn}n∈N be a sequence of real numbers satisfying the following property for
all m ∈ N:

lim inf
n→∞ (αn+m − αn) = mv,

where v does not depend on m. Then, there exists a strictly increasing sequence {nk}k∈N (which
is independent of m) such that, for all m ∈ N, we have

lim
k→∞

(αnk+m − αnk
) = mv.

Proof. By replacing αn by αn − nv, we can always assume that v = 0. Given n ∈ N, let

βn = inf
k�n

(αk+1 − αk) and γn = αn −
n−1∑
k=0

βk.
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By assumption on the sequence {αn}, we have limn→∞
∑n+m−1

k=n βk = 0 for all m ∈ N, and then

lim inf
n→∞ (γn+m − γn) = lim inf

n→∞ (αn+m − αn) = 0, m ∈ N.

Moreover, the sequence {γn} is increasing because γn+1 − γn = αn+1 − αn − βn � 0. As a
consequence, one proves by induction that for each m ∈ N there exists an increasing sequence
{nm

k }k∈N such that

0 � γnm
k +m − γnm

k
� 1

k
and nm

k > nm−1
k−1 , k, m ∈ N.

The diagonal sequence {nk
k}k∈N is the desired sequence. Indeed, we have

0 � lim
k→∞

(αnk
k+m − αnk

k
) = lim

k→∞
(γnk

k+m − γnk
k
) � lim

k→∞
(γnk

k+k − γnk
k
) = 0, m ∈ N. �

Proof of theorem 3.1. Let c+ ∈ (c, 1). By lemma 2.2, the function ηv̄,c+ , which we denote by
η, exists. Given n ∈ N, let jn denote the quantity Jc+(F

nη). This quantity belongs to R for
all n since by s-homogeneity and the properties of f , we have Fnη(−∞) = f n(η(−∞)) � c

and Fnη(+∞) = 1.
We consider the functions φn defined by

φn(x) = inf
k�n

{T −jkF kη(x)}, x ∈ R.

We have φn � φn+1; thus, the following limit exists: φ∞ = limn→∞ φn.
Given m ∈ N, let βm = lim infn→∞(jn+m − jn). We are going to prove that βm = mv̄ for

all m.
We have Fn+1η � T v̄F nη, which implies the inequality jn+1 � jn + v̄ and then βm � mv̄

for all m.
In order to prove the converse inequality, we first observe that T −jnF nη ∈ Sv̄,c+ for

all n. By introducing the function ψc+ = c+P�H , we have ψc+ � T −jnF nη. Consequently,
Fψc+ � T −jnF n+1η and then

Jc+(Fψc+) � Jc+(T
−jnF n+1η) = jn+1 − jn.

In other words, jn+1 − jn is uniformly bounded from above and hence βm < +∞ for all m.
Given m � 1 and ε > 0, let nm,ε be such that for all k � nm,ε, we have βm −ε � jk+m −jk .

By definition of φn, given n � nm,ε, we have φn � T −jkF kη for all k � n and then

T −(βm−ε)Fmφn � T −(jk+m−jk)Fmφn � T −jk+mF k+mη, k � n.

Consequently, T −(βm−ε)Fmφn � φn+m. By s-homogeneity, one can take the limit n → ∞ and
then the limit ε → 0 and apply P� to obtain

P�T
−βmFmφ∞ � P�φ∞

and by s-homogeneity, T −βmFmP�φ∞ � P�φ∞.
Consider the function defined by ϕm(x) = min0�k<m{T −kβm/mF kP�φ∞(x)} for all x ∈ R.

We have φ∞(−∞) � c and φ∞(+∞) = 1. By s-homogeneity, it follows that ϕm(−∞) � c

and ϕm(+∞) = 1, which implies that Jc+(ϕm) ∈ R.
Now, by monotony of F , we have

T −βm/mFϕm � T −(k+1)βm/mF k+1P�φ∞, 0 � k < m.

Choosing k = m − 1, we obtain T −βm/mFϕm � T −βmFmP�φ∞ � P�φ∞ and consequently
T −βm/mFϕm � ϕm. It follows that Sβm/m,c+ is not empty and consequently βm � mv̄, which
leads to the desired property.
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Since βm = mv̄, one can use lemma 3.2 to state the existence of a strictly increasing
sequence {nk} such that for all m ∈ N

βm = lim
k→∞

(jnk+m − jnk
).

The sequence {T −jnk F nkη}k∈N is composed of increasing functions with values in [0, 1]. By
Helly’s selection theorem (see chapter 10 in [12] or exercise 13, chapter 7 in [15]), it has a
pointwise convergent subsequence. Without loss of generality, let

η∞ = lim
k→∞

T −jnk F nkη.

Then η∞ is an increasing function satisfying η∞(x) � c+ and η∞(−x) � c+ for all x > 0. For
all k, we have

φnk
� T −jnk+mF nk+mη = T −(jnk+m−jnk

)FmT −jnk F nkη, m ∈ N.

By s-homogeneity and by lemma B.1, this implies (firstly at the points where T −mv̄Fmη∞ is
continuous and then by applying P�)

P�φ∞ � T −mv̄FmP�η∞
and consequently P�φ∞ � T −mv̄Fmη∞. Furthermore, η ∈ Sv̄,c+ implies the inequality
T −v̄FT −jnk F nkη � T −jnk F nkη. The limit k → ∞ gives T −v̄F η∞ � η∞ and then

T −(m+1)v̄Fm+1η∞ � T −mv̄Fmη∞, m ∈ N.

These inequalities imply the existence of the following function:

φ = Pr( lim
m→∞ T −mv̄Fmη∞).

This function is increasing and right continuous. Using s-homogeneity, one proves that
T −v̄Fφ = φ.

To prove that φ is a distribution function, it remains to show the appropriate asymptotic
behaviour. By using s-homogeneity in the previous relation, one shows that φ(−∞) and
φ(+∞) are fixed points of f . Moreover, the inequalities of the previous paragraph imply
that P�φ∞ � φ � η∞ and then φ(x) � c+ and φ(−x) � c+ for all x > 0. Consequently,
φ(+∞) = 1 and φ(−∞) ∈ {0, c}. If φ(−∞) = c, then Dv̄,c+ would not be empty and we
would have a contradiction with the assumption v̄s < v̄. So φ(−∞) = 0 and there exist fronts
of velocity v̄. �

3.2. Existence of fronts in special cases

We now provide conditions on the local map and on the coupling to ensure that v̄s = −∞.
Since v̄ > −∞, we are sure that fronts exist in such systems.

To that purpose, we consider the upper right derivative of f at c, say f̄ ′
r (c), and the infimum

bound of the support of h,

vmin(h) = inf{x ∈ R : h(x) > 0}.
Proposition 3.3. If f is a bistable map such that f̄ ′

r (c) = +∞ and if h is a distribution function
such that vmin(h) = −∞, then v̄s = −∞.

This result is a consequence of the following statement.

Lemma 3.4. Given c+ ∈ (c, 1), consider the function ψc+ = c + (c+ − c)P�H . We have

(1) v̄s � Jc+(Fψc+),
(2) P�h(Jc+(Fψc+)) � (c+ − c)/(f (c+) − c).
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Proof. (1) Assume that Dv,c+ is not empty and let ψ ∈ Dv,c+ . Then ψc+ � ψ and hence
Fψc+ � Fψ � T vψ . This implies that Jc+(Fψc+) � v and, since v � v̄s is arbitrary, we
obtain the desired conclusion.

(2) An explicit calculation shows that Fψc+(x) = c + (f (c+) − c)P�h(x) for all x ∈ R.
By definition of Jc+(Fψc+), we then have for every δ > 0

c + (f (c+) − c)P�h(Jc+(Fψc+) − δ) < c+.

However, f (c+) is larger than c and δ is arbitrary. Therefore, we obtain the desired
conclusion. �

Proof of proposition 3.3. Since v̄s does not depend on c+, lemma 3.4 shows that

P�h(v̄s) � lim inf
c+→c
c+>c

c+ − c

f (c+) − c
= 1

f̄ ′
r (c)

= 0,

from which it results that v̄s � vmin(h) = −∞ and the proposition follows. �

3.3. Existence of fronts using approximations

In the proof of existence in theorem 1.1 as well as in the proof of the continuity of front velocity,
we shall employ the following result on the existence of fronts for the limit of a convergent
sequence of systems of the form h ∗ f .

Theorem 3.5. Let {fn}n∈N be a sequence of bistable maps such that limn→∞ fn = f ,
where f is a bistable map and let {hn}n∈N be a sequence of distribution functions such that
limn→∞ d(hn, h) = 0, where h is a non-degenerate distribution function. Assume that, for
each n, the map Fn = hn ∗fn has fronts of velocity vn and suppose that limn→∞ vn = v. Then,
the map F = h ∗ f has fronts of velocity v.

The proof uses the following statement.

Lemma 3.6. Let {ψn}n∈N be a sequence of distribution functions such that limn→∞ ψn = ψ

and let {fn}n∈N be a sequence of increasing maps defined on [0, 1] such that limn→∞ fn = f ,
where f is continuous. Then limn→∞ fn ◦ ψn = f ◦ ψ .

Proof. The uniform continuity of f and the monotony of the fn imply that the convergence
of the sequence {fn} holds in the uniform topology. The proof of this claim can be done using
arguments similar to those used in the proof of lemma B.3 and is left to the reader.

Fix x ∈ R and ε > 0. Let n0 be such that n > n0 implies ‖fn − f ‖ < ε/2 and let n1

be such that n > n1 implies |f ◦ ψn(x) − f ◦ ψ(x)| < ε/2. For all n larger than n0 and n1,
we have

|fn ◦ ψn(x) − f ◦ ψ(x)| � |fn ◦ ψn(x) − f ◦ ψn(x)| + |f ◦ ψn(x) − f ◦ ψ(x)| < ε,

which is the desired conclusion. �

Proof of theorem 3.5. Fix c− ∈ (0, c) and c+ ∈ (c, 1) and recall the definition of v̄s from
section 2.3. Either v � v̄s or v > v̄s . We prove that in both cases, the map F = h ∗ f has
fronts of velocity v.

Assume that v � v̄s , let φn be a shape of fronts of velocity vn for the map Fn = hn ∗ fn

and let jn = Jc−(φn) ∈ R. By Helly’s selection theorem, the sequence {T −jnφn} has
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a pointwise convergent subsequence that we assume to be that sequence, for the sake of
notation. Let

φ∞ = lim
n→∞ T −jnφn and φ = Prφ∞.

We prove that φ is a distribution function that satisfies Fφ = T vφ. This function φ belongs
to I and is right continuous. Moreover, using lemma B.1 and applying Pr , we obtain

Pr( lim
n→∞ T vnT −jnφn) = T vφ.

From lemma 3.6, we have

lim
n→∞ fn ◦ T −jnφn = f ◦ φ∞

and then, by proposition B.2 and lemma B.3, we conclude that

lim
n→∞ hn ∗ fn ◦ T −jnφn(x) = h ∗ f ◦ φ∞(x)

for all x, where h ∗ f ◦ φ∞ is continuous. Applying Pr , it follows by s-homogeneity that
h ∗ f ◦ φ = T vφ.

It remains to be shown that φ has the appropriate asymptotic behaviour. The relation
Fφ = T vφ implies that φ(−∞) and φ(+∞) are fixed points of f . In addition, we have
φ(x) � c− for every x < 0 and then φ(−∞) = 0. On the other hand φ(0) � c− and then
φ(+∞) ∈ {c, 1}. The assumption v � v̄s and lemma 2.3 imply that v < v̄i , which ensures
φ(+∞) = 1.

Assume now that v̄s < v. The argument is similar. Given n ∈ N, let jn = Jc+(φn) and let
again

φ∞ = lim
n→∞ T −jnφn and φ = Prφ∞.

This function φ is increasing and right continuous and satisfies the relation Fφ = T vφ.
Moreover, φ(0) � c+ and then φ(+∞) = 1. In addition, we have φ(−∞) ∈ {0, c} and the
inequality v̄s < v imposes φ(−∞) = 0. �

4. Proof of the main results

This section contains the proofs of theorems 1.1, 1.2 and 1.3. Some proofs are accomplished
by using approximation techniques and use the following relations between f , h and the
velocity, v̄.

Lemma 4.1. Given a bistable map f and a distribution function h, let c− ∈ (0, c) and
c+ ∈ (c, 1). The following inequalities hold:

c − f (c−)

1 − f (c−)
� h(v̄) and P�h(v̄) � c+

f (c+)
.

Proof. The second inequality is proved using arguments similar to those used in the proof
of lemma 3.4. Consider the function ψc+ = c+P�H . One shows that v̄ � Jc+(Fψc+) and
P�h(Jc+(Fψc+)) � c+/f (c+), from which the inequality follows.

In order to prove the first inequality, consider the function ψc− = c− +(1−c−)H . We have
Fψc− = f (c−) + (1 − f (c−))h and then Jc−(Fψc−) ∈ R. In addition, the definition of ψc−
shows that Fψc− � T Jc− (Fψc− )ψc− . Since Jc−(ψc−) = 0, it follows that ψc− ∈ SJc− (Fψc− ),c+

and then Jc−(Fψc−) � v̄.
The right continuity of h and the definition of Jc−(Fψc−) show that (c− − f (c−))/

(1 − f (c−)) � h(Jc−(Fψc−)). The first inequality follows from the monotony of h. �
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4.1. Proof of existence of fronts

Theorem 1.1 claims the existence of fronts and, when f is regular, the uniqueness of their
velocity. For the sake of clarity, we only prove existence in this subsection. The proof of
uniqueness is postponed to the next subsection.

If h = T vH for some v ∈ R, then FH = T vH and the existence of fronts is proved.
Therefore, in the rest of this subsection, h is assumed not to be degenerate.

We want to apply theorem 3.5. For this purpose, we construct a family {Fε} of
approximations of F that satisfy the condition of proposition 3.3.

Let c− ∈ (0, c) and c+ ∈ (c, 1) be fixed. We introduce the following numbers:

v− = inf

{
v ∈ R :

c− − f (c−)

1 − f (c−)
� h(v)

}
and v+ = sup

{
v ∈ R : P�h(v) � c+

f (c+)

}
.

Now, given ε ∈ (0,
√

c+ − c), consider the map fε defined by

fε(x) =
{
f (x) if x ∈ [0, c],
max{c + ε

√
x − c, f (x)} if x ∈ (c, 1]

and given ε ∈ (0, (c− − f (c−))/(1 − f (c−))), consider the distribution function defined by

hε(x) =
{

max{εex−v−
, h(x)} if x < v−,

h(x) if x � v−.

Let ε0 = min{√c+ − c, (c− − f (c−))/(1 − f (c−))} and let {Fε}0<ε<ε0 be the family of
mappings in B defined by Fε = hε ∗ fε.

We have f̄ ′
εr
(c) = +∞ andvmin(hε) = −∞. According to proposition 3.3 and theorem 3.1,

for every ε ∈ (0, ε0), there exist a distribution function φε and a real number vε such that
Fεφε = T vεφε.

Moreover, limε→0 fε = f and limε→0 hε = h. In order to apply theorem 3.5, we show
that the velocities vε are bounded.

Lemma 4.2. For every 0 < ε < ε0, we have v− � vε � v+.

Proof. From the definition of fε, we have fε(c−) = f (c−) and fε(c+) = f (c+) for every
ε ∈ (0, ε0). By using lemma 4.1, we obtain the following inequalities for all ε ∈ (0, ε0):

c− − f (c−)

1 − f (c−)
� hε(vε) and P�hε(vε) � c+

f (c+)
.

Moreover, from the definition of hε and since ε < (c− − f (c−))/(1 − f (c−)), we have
hε(x) < (c− − f (c−))/(1 − f (c−)) for all x < v−. Together with the previous first inequality,
this implies that vε � v−.

Furthermore, the condition hε(x) = h(x) for all x � v− implies that P�h(vε) � c+/f (c+)

and, from the definition of v+, we conclude that vε � v+. �

By lemma 4.2, there exists a sequence {εn}n∈N of elements in (0, ε0) such that the following
limits exist:

lim
n→∞ εn = 0 and lim

n→∞ vεn
= v,

for some v ∈ [v−, v+]. One can now apply theorem 3.5 with the sequences {fεn
} and {hεn

} to
obtain the existence of fronts of velocity v for the map F = h ∗ f .
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4.2. Proof of uniqueness of the velocity

In this subsection, we prove the second part of theorem 1.1, namely the uniqueness of the front
velocity when f is regular. The following result will be used.

Lemma 4.3. Assume that the bistable map f is regular and let φ be a shape of fronts of velocity
v. For every c+ ∈ (1 − δ, 1), where δ is the number of the condition of regularity of f , there
exists s ∈ R such that φ � T −sηv,c+ .

Proof. Assume that Jc+(φ) = 0. Note that another choice of Jc+(φ) would only affect the
value of s in the statement. Let c− ∈ (0, δ) and let j = Jc−(φ) � 0. Since ηv,c+(x) � c+ for
every x > 0, there exists s � 0 such that

φ(x) � T −sηv,c+(x) if x ∈ [j, 0].

Consider the family of functions {ψn}n∈N defined as follows:

ψ0(x) =
{
ηv,c+(x) if x 
∈ [j, 0],
φ(x) if x ∈ [j, 0],

ψn+1(x) =
{

max{ψn(x), T −vFψn(x)} if x 
∈ [j, 0],
φ(x) if x ∈ [j, 0].

We prove using induction that ψn � φ and ψn � T −sηv,c+ for all n ∈ N.
By construction and since ηv,c+ � φ and s � 0, these inequalities hold for n = 0. Assume

they hold for some n ∈ N. Then we have

T −vFψn � T −vFφ = φ and T −vFψn � T −vFT −sηv,c+ � T −sηv,c+ ,

which imply that the inequalities hold for n + 1.
By using once again the definition of ψn, we obtain the inequalities ηv,c+ � ψn � ψn+1 � φ

for all n. Thus the following limit exists,

ψ∞ = lim
n→∞ ψn

and satisfies the inequalities ηv,c+ � ψ∞, ψ∞ � φ and ψ∞ � T −sηv,c+ . More precisely,
we have 


ψ∞(x) � φ(x) < c− if x < j,

ψ∞(x) = φ(x) if x ∈ [j, 0],
c+ � ηv,c+(x) � ψ∞(x) � φ(x) if 0 < x.

(1)

Therefore, the monotony and regularity of f imply the inequality

f ◦ φ − f ◦ ψ∞ � φ − ψ∞.

On the other hand, since T −vFψn � φ, the definition of ψn implies that T −vFψn � ψn+1 and
then by s-homogeneity T −vFψ∞ � ψ∞.

As a consequence, we obtain

φ − ψ∞ � T −vFφ − T −vFψ∞
� T −vh ∗ (f ◦ φ − f ◦ ψ∞)

� T −vh ∗ (φ − ψ∞).

If T −vh 
= H , then lemma A.4 implies that ψ∞ = φ. Since ψ∞ � T −sηv,c+ , we obtain the
desired result. If T −vh = H , then the front shape equation imposes f ◦φ = φ and the previous
inequalities result in f ◦ φ − f ◦ ψ∞ = φ − ψ∞. It follows that f ◦ ψ∞ = ψ∞, and by (1)
we also conclude that φ = ψ∞ � T −sηv,c+ . �

We can now state and prove the uniqueness of the front velocity.
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Theorem 4.4. Assume that the bistable map f is regular. Then, the velocity of fronts is unique
and is equal to v̄, the quantity introduced in section 2.1.

Proof. By definition, for any front velocity v, there exists a shape in Sv,c+ for any c+ ∈ (c, 1).
Consequently, any front velocity satisfies the inequality v � v̄.

By contradiction, assume the existence of a front velocity v < v̄ and let φ be the
corresponding shape and fix c+ ∈ (1 − δ, 1). Using statement 2 of lemmas 2.2 and 4.3,
one obtains the existence of s ∈ R such that

φ � T −sηv,c+ � T −sηv̄,c+ .

Applying T −nv̄F n to these inequalities, we obtain by monotony

T n(v−v̄)φ � T −sηv̄,c+ , n ∈ N

and by taking the limit n → ∞, we get 1 � T −sηv̄,c+ , which is in contradiction with the fact
that ηv̄,c+ ∈ Sv̄,c+ , statements 1 and 3 of lemma 2.2. �

4.3. Proof of continuity of the front velocity

Theorem 1.2 claims that the sequence {v(fn, hn)} of front velocities converges to v(f, h),
provided that the sequence {fn} converges to f and the sequence {hn} converges to h. Its proof
follows the same lines as the proof of the existence of fronts. We denote by vn the velocity
v(fn, hn). As in lemma 4.2, we prove that the sequence {vn} is bounded.

Let c− ∈ (0, c), c+ ∈ (c, 1) and ε > 0 be fixed such that

ε < min

{
c− − f (c−)

1 − f (c−)
, 1 − c+

f (c+)

}
.

By assumption on the sequence {fn}, let n0 ∈ N be such that n > n0 implies
c− − f (c−)

1 − f (c−)
− ε

2
� c− − fn(c−)

1 − fn(c−)
and

c+

fn(c+)
� c+

f (c+)
+

ε

2
.

By applying lemma 4.1, we deduce that, for every n > n0, we have
c− − f (c−)

1 − f (c−)
− ε

2
� hn(vn) and P�hn(vn) � c+

f (c+)
+

ε

2
.

By assumption on the sequence {hn}, there exists n1 � n0 such that for all n > n1, we have

hn(vn) � h
(
vn +

ε

2

)
+

ε

2
and P�h

(
vn − ε

2

)
− ε

2
� P�hn(vn).

Consequently, for all n > n1, we have
c− − f (c−)

1 − f (c−)
− ε � h

(
vn +

ε

2

)
and P�h

(
vn − ε

2

)
� c+

f (c+)
+ ε,

which proves that the sequence {vn} is bounded.
Let now {vni

}i∈N be any convergent subsequence and let v = limi→∞ vni
be its limit.

If h is not degenerate, then by applying theorem 3.5, we deduce that the map F = h ∗ f

has fronts of velocity v. By uniqueness, we have v = v(f, h) and since the subsequence is
arbitrary, we conclude that limn→∞ v(fn, hn) = v(f, h).

If h = T v′
H for some v′ ∈ R, then Fψc = T v′

ψc, where ψc = c + (1 − c)H . For any
increasing function ψ : R → [c, 1], we have Fψ � T v′

ψ . It follows that v̄s = v′. Similarly,
one shows that v̄i = v′. If v < v̄i , then the same arguments as those in the proof of theorem 3.5
show the existence of fronts of velocity v. However, this is impossible by the uniqueness of
front velocity. Similarly, the assumption v > v̄s also leads to a contradiction. Therefore, we
conclude that limn→∞ v(fn, hn) = v(f, h) and theorem 1.2 is proved.
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4.4. Proof of the existence of the velocity of interfacial orbits

In this subsection, we prove theorem 1.3 on the existence and uniqueness of the velocities of
orbits whose initial condition is an interface.

We recall that a function u ∈ B is an interface if there exists c− ∈ (0, c), c+ ∈ (c, 1) and
j1 � j2 ∈ R such that T j2ϕ+ � u � T j1ϕ− where ϕ+ = c+H and ϕ− = c− + (1 − c−)P�H .
By monotony, we have for every t ∈ N

T j2F tϕ+ � F tu � T j1F tϕ−. (2)

Since F tϕ+(+∞) = f t (c+) and F tϕ−(−∞) = f t (c−), it follows that F tu is an interface for
every t .

In order to prove that the velocity of every interfacial orbit is the front velocity, we first
prove the result in the case where f is superstable. We then extend the conclusion to any
regular bistable map by using theorem 1.2.

A bistable map is said to be superstable if there exists δ > 0 such that f (x) = 0 if
x ∈ [0, δ] and f (x) = 1 if x ∈ [1 − δ, 1].

Proposition 4.5. Let h be a distribution function and let f be a superstable map. For every
interface u and every a ∈ (0, 1), we have

lim
t→∞

Ja(F
tu)

t
= v(f, h).

Proof. Let u be an interface. According to the arguments at the beginning of this section, one
can always assume, by considering the function F tu for t sufficiently large instead of u, that
the inequalities (2) hold for all t ∈ N with c− � δ and c+ � 1 − δ. By definition of Ja , it
results that

lim inf
t→∞

Ja(F
tϕ−)

t
� lim inf

t→∞
Ja(F

tu)

t
� lim sup

t→∞
Ja(F

tu)

t
� lim sup

t→∞
Ja(F

tϕ+)

t
.

Therefore, we only have to prove that

lim inf
t→∞

Ja(F
tϕ−)

t
= lim sup

t→∞
Ja(F

tϕ+)

t
= v(f, h).

From theorem 1.1, let φ be a shape of fronts for the map h∗f . There exist j3 � j4 ∈ R such
that T j4ϕ+ � φ � T j3ϕ−. These inequalities imply that, for every a ∈ (0, 1), the following
inequalities hold for all t ∈ N:

j3 + Ja(F
tϕ−) � Ja(F

tφ) � j4 + Ja(F
tϕ+).

Now, f is superstable and by assumptions on c− and c+, we have Fϕ− = Fϕ+ = FH and then
Ja(F

tϕ−) = Ja(F
tϕ+) for all t � 1. Together with the relation Ja(F

tφ) = v(f, h)t + Ja(φ)

(every superstable map is regular), we finally obtain

lim
t→∞

Ja(F
tϕ−)

t
= lim

t→∞
Ja(F

tϕ+)

t
= v(f, h),

which is the desired result. �

Proof of theorem 1.3. We prove that, for any interface u, lim supt→∞ Ja(F
tu)/t � v(f, h).

The proof that lim inf t→∞ Ja(F
tu)/t � v(f, h) is similar and is left to the reader.
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The strategy is to construct, for every a, a family {fε} of superstable approximations of f .
Given ε ∈ (0, min{c, 1 − c}), we consider the superstable map fε defined on [0, 1] as follows:

fε(x) =




0 if x ∈
[
0,

ε

2

]
,

f (2x − ε) if x ∈
[ε

2
, ε

]
,

f (x) if x ∈ [ε, 1 − ε],

f (1 − ε) if x ∈ [1 − ε, 1].

Let Fε = h ∗ fε. We have fε � f and then Ja(F
tu) � Ja(F

t
εu) for all t .

The map fε is superstable with fixed points 0 and f (1 − ε). Since the choice of the fixed
points of the local map is arbitrary in our analysis, theorem 1.1 and proposition 4.5 hold for
the mappings Fε. It follows that

lim
t→∞

Ja(F
t
εu)

t
= v(fε, h)

and then

lim sup
t→∞

Ja(F
tu)

t
� v(fε, h).

From the definition of fε, we have limε→0fε = f . From theorem 1.2 and comments following
this statement, it follows that limε→0v(fε, h) = v(f, h) and hence

lim sup
t→∞

Ja(F
tu)

t
� v(f, h). �

5. Extension to other models

Our results on front dynamics extend to systems that are linear convex combinations of maps
of the form h ∗ f . This allows us to consider systems where several nonlinearities and several
couplings are combined. As shown later, such a combination can be constructed to obtain a
lattice dynamical system [2].

5.1. The generalized model

From now on, the dynamical system we are considering is (B, F ), where F is defined by

Fu =
∑
k∈N

akhk ∗ fk ◦ u, u ∈ B.

Here the numbers ak � 0 and
∑

k∈N
ak = 1 (we assume that a0 > 0, which is always

possible by shifting the index). The functions hk are distribution functions and the maps fk

are continuous increasing maps defined on [0, 1] such that there exists c ∈ (0, 1) so that for
every k ∈ N we have

fk(x) � x if 0 � x � c and x � fk(x) if c � x � 1.

Moreover, we assume that the map

f =
∑
k∈N

akfk

is bistable. Its unstable fixed point is then c.
In addition, we say that the map F is regular if there exists δ > 0 such that for every k ∈ N

we have

|fk(x) − fk(y)| � |x − y| if x, y ∈ (0, δ) or if x, y ∈ (1 − δ, 1).
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Example: Lattice dynamical system. Let ε ∈ (0, 1) and f be a regular bistable map such that
the map f0 defined on [0, 1] by f0(x) = (f (x) − εx)/(1 − ε) is increasing. Let f1(x) = x

for all x, a0 = 1 − ε, a1 = ε, ak = 0 if k > 1, h0 = H and h1 = 1
2 (T 1H + T −1H).

The map

Fu(x) =
∑
k∈N

akhk ∗ fk ◦ u(x) = f ◦ u(x) +
ε

2
(u(x − 1) − 2u(x) + u(x + 1))

satisfies the desired properties and is regular.

5.2. Dynamics of fronts

The map F keeps B invariant; so the dynamics is well-defined. Moreover, it shares the
following properties with the previous model (where ak = δk,0).

• Monotony (respectively s-homogeneity) by monotony (respectively s-homogeneity) of
hk ∗ fk , the non-negativity of the ak and the uniform convergence of the series.

• If u is a constant function, then Fu is also constant and Fu = f ◦ u.

In particular, these properties imply that for every u ∈ I, we have Fu(±∞) = f (u(±∞)).
Therefore, every statement that only uses these properties and not the explicit expression

of the mapping also holds in the present model. Modifying the other statements so that they
also hold, we obtain the following extension of the results on the dynamics of fronts and
interfacial orbits.

Theorem 5.1.

(1) The map F = ∑
k∈N

akhk ∗ fk has fronts of velocity v for some v ∈ R. In addition, if F

is regular, then this velocity is unique and is denoted by v(F ).
(2) Let {Fn}n∈N be a sequence of maps defined by Fn = ∑

k∈N
ak,nhk,n ∗ fk,n, where for

every n, the assumptions of section 5.1 hold, where for every k, limn→∞ fk,n = fk and
limn→∞ d(hk,n, hk) = 0 and where limn→∞

∑
k∈N

|ak,n − ak| = 0. Assume that the maps
F and Fn are regular. Then, we have limn→∞ v(Fn) = v(F ).

(3) If F is regular, then for every interface u and every a ∈ (0, 1), we have
limt→∞ Ja(F

tu)/t = v(F ).

These results on front dynamics can be extended to other models. For instance, if g is a
homoeomorphism of [0, 1], then by a simple change of variable, the conclusions of theorem 5.1
also hold for the map

u 
→ g−1
( ∑

k∈N

akhk ∗ fk ◦ g ◦ u
)
, u ∈ B,

which can be viewed as a nonlinear coupling between the local maps fk ◦ g.

5.3. Analysis of the dynamics

The results claimed in theorem 5.1 follow from an analysis similar to the one developed for
the previous model. There are two essential steps: the first one, reported in this section, deals
with sub-front properties (similar to section 2) and various constructions of fronts (similar to
section 3). The second step is about the proof of the theorem and will be presented in the next
section.

First, one shows that, if the supremum of sub-front velocities, namely v̄, is finite, then
there exists a corresponding minimal sub-front, namely ηv̄,c+ . More precisely, lemmas 2.1
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and 2.2 can be easily repeated for the present map since their proofs do not use the explicit
expression of F but only the properties mentioned earlier.

Second, by investigating the properties of sub-fronts between c and 1 (for which the
supremum velocity has been denoted as v̄s) and the properties of super-fronts between 0 and
c (with corresponding infimum velocity v̄i), one obtains the following statement analogous to
lemma 2.3.

Lemma 5.2. If the distribution function h = ∑
k∈N

akhk is not degenerate, then we have
v̄s < v̄i .

The proof is very similar to that of lemma 2.3 and relies on the property that all maps fk cross
the diagonal at the same point c. Note that if h is degenerate, then all hk are equal and we have
F = h ∗ f , for which the existence of fronts has been proved.

Given sub-front properties, one can proceed with the construction of fronts. Recall that
this construction was threefold in section 3. First, we developed a general construction by
means of theorem 3.1. Second, a sufficient condition to apply this theorem was obtained
(proposition 3.3) and we finally proved an approximation statement (theorem 3.5).

Theorem 3.1 claims that the condition v̄s < v̄ implies the existence of fronts. For the
present map, this theorem still holds since its proof only uses monotony and s-homogeneity of
the map, the sub-front ηv̄,c+ and the definitions of v̄ and v̄s , but not the explicit expression of F .

Proposition 3.3 becomes the following statement, which together with theorem 3.1,
indicates that the conditions f̄ ′

0r
(c) = +∞ and vmin(h0) = −∞ imply the existence of fronts

(because we always have v̄ > −∞).

Proposition 5.3. If f̄ ′
0r

(c) = +∞ and if vmin(h0) = −∞, then v̄s = −∞.

As before, this result is an immediate consequence of the following statement.

Lemma 5.4. Given c+ ∈ (c, 1), consider the function ψc+ = c + (c+ − c)P�H . We have

(1) v̄s � Jc+(Fψc+),
(2) P�h0(Jc+(Fψc+)) � (c+ − c)/(a0(f0(c+) − c)).

The approximation technique is based on the following statement (analogous to
theorem 3.5).

Theorem 5.5. Let {Fn}n∈N be a sequence of maps defined by Fn = ∑
k∈N

ak,nhk,n ∗ fk,n,
where for every n, the assumptions of section 5.1 hold, where for every k, limn→∞ fk,n = fk

and limn→∞ d(hk,n, hk) = 0 and where limn→∞
∑

k∈N
|ak,n − ak| = 0. Assume that

F = ∑
k∈N

akhk ∗ fk satisfies also the assumptions of section 5.1, where h = ∑
k∈N

akhk

is not degenerate.
If each map Fn has fronts of velocity vn and if limn→∞ vn = v, then the map F has fronts

of velocity v.

Proof. The proof resembles that of theorem 3.5. Let φ∞ = limn→∞ T −jnφn and φ = Prφ∞,
where φn is a shape of front of velocity vn of Fn and jn = Jc−(φn) (respectively jn = Jc+(φn))
if one assumes v � v̄s (respectively v > v̄s). We prove that

lim
n→∞ FnT

−jnφn(x) = Fφ∞(x)

at all points where Fφ∞ is continuous.
As before, for every k ∈ N, we have limn→∞ hk,n ∗ fk,n ◦ T −jnφn(x) = hk ∗ fk ◦ φ∞(x)

for every x such that hk ∗ fk ◦ φ∞ is continuous.
Given ε > 0, let pε be such that

∑
k>pε

ak < ε/4. Let x ∈ R be a point where Fφ∞
is continuous. Every function hk ∗ fk ◦ φ∞ is continuous at x. Indeed, if hk ∗ fk ◦ φ∞
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is discontinuous at x for some k, then monotony implies that Fφ∞ is also discontinuous
at this point. Then there exists nε ∈ N such that for all n > nε, we have for every
k ∈ {0, . . . , pε}
|hk,n ∗ fk,n ◦ T −jnφn(x) − hk ∗ fk ◦ φ∞(x)| <

ε

4
and

∑
k∈N

|ak,n − ak| <
ε

4
.

Therefore, for every n > nε, we have

|FnT
−jnφn(x) − Fφ∞(x)| � 2

∑
k>pε

ak +
∑
k∈N

|ak,n − ak|

+
pε∑

k=0

ak|hk,n ∗ fk,n ◦ T −jnφn(x) − hk ∗ fk ◦ φ∞(x)|

< 3
ε

4
+

ε

4

pε∑
k=0

ak � ε,

which shows the desired limit. Applying Pr , it follows that Fφ = T vφ.
In order to conclude the proof, it remains to be shown that φ has the appropriate asymptotic

behaviour. This can be done in a way similar to that of the proof of theorem 3.5 by considering
separately the cases v � v̄s and v > v̄s . �

5.4. Sketch of proof of theorem 5.1

As in the previous model, the proof of theorem 5.1 uses the following auxiliary result analogous
to lemma 4.1.

Lemma 5.6. Let c− ∈ (0, c) and c+ ∈ (c, 1). The following inequalities hold:

c− − f (c−) �
∑
k∈N

ak(1 − fk(c−))hk(v̄) and
∑
k∈N

akfk(c+)P�hk(v̄) � c+.

(1) In order to prove the existence of fronts in a way similar to that of section 4.1, we
consider the numbers

v− = inf
{
v ∈ R : c− − f (c−) �

∑
k∈N

ak(1 − fk(c−))hk(v)
}

v+ = sup
{
v ∈ R :

∑
k∈N

akfk(c+)P�hk(v) � c+

}

and, when ε is sufficiently small, the maps f ε
0 and the functions hε

0 defined by

f ε
0 (x) =

{
f0(x) if x ∈ [0, c],
max{c + ε

√
x − c, f0(x)} if x ∈ (c, 1],

hε
0(x) =

{
max{εex−v−

, h0(x)} if x < v−,

h0(x) if x � v−.

We have f̄ ε′
0r

(c) = +∞ and vmin(h
ε
0) = −∞ for every ε. By lemma 5.3 and (the generalized)

theorem 3.1, each map Fε defined by Fε = a0h
ε
0 ∗ f ε

0 +
∑

k�1 akhk ∗ fk has fronts of velocity
vε. Moreover, lemma 5.6 implies that v− � vε � v+.

Furthermore, the maps f ε
0 converge to f0 and the functions hε

0 converge to h0. By applying
theorem 5.5, we conclude that F has fronts of velocity v = lim supε→0 vε.
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The proof of uniqueness is nearly the same as the one given in section 4.2. Indeed, only
the last part of the proof of lemma 4.3 (after relation (1)) needs to be adapted to the present
map. This adaptation is left to the reader.

(2) As in the proof of theorem 1.2, this statement follows by using the approximation
theorem 5.5 once the velocities vn := v(Fn) have been shown to be bounded. Here, we only
prove that vn is bounded from below; the proof of the upper bound is left to the reader.

Let c− ∈ (0, c) and let ε ∈ (0, c−−f (c−)) be fixed. Let pε be such that
∑

k>pε
ak,n < ε/3

for all n. Let n0 ∈ N be such that for every n > n0, we have c− −f (c−)−ε/3 � c− −f·,n(c−),
where f·,n = ∑

k∈N
ak,nfk,n.

Now, let n1 � n0 be such that for all n > n1, we have for every k ∈ {0, . . . , pε}

hk,n(vn) � hk

(
vn +

ε

6

)
+

ε

6
.

Finally, let n2 � n1 be such that for all n > n2, we have for every k ∈ {0, . . . , pε},
ak,n(1 − fk,n(c−)) � ak(1 − fk(c−)) + ε/6. It follows that, for all n > n2, we have

ak,n(1 − fk,n(c−))hk,n(vn) � ak(1 − fk(c−))hk

(
vn +

ε

6

)
+

ε

3

for every k ∈ {0, . . . , pε}, and then by lemma 5.6

c−f (c−) − ε � c− − f·,n(c−) − 2ε

3
�

pε∑
k=0

ak,n(1 − fk,n(c−))hk,n(vn) − ε

3

�
pε∑

k=0

ak(1 − fk(c−))hk

(
vn +

ε

6

)
.

Consequently, the sequence {vn} is bounded from below.
(3) In order to obtain the result on the velocity of interfacial orbits, let us first say that the

map F is superstable if there exists δ > 0 such that, for every k ∈ N, fk(x) = 0 if x ∈ [0, δ]
and fk(x) = 1 if x ∈ [1 − δ, 1].

If F is superstable, then by following the proof of proposition 4.5 and since we still have
Fϕ− = Fϕ+ = FH , we conclude that

lim
t→∞

Ja(F
tu)

t
= v(F )

for every interface u and every a ∈ (0, 1).
In the general case, we approximate the map F by the superstable maps Fε =∑

k∈N
aε

khk ∗ f ε
k , where

aε
k =

{
ak if k � 1/ε,

0 if k > 1/ε

and f ε
k are superstable approximations of fk that satisfy the assumptions of section 5.1 and are

such that f ε
k � fk . Then Ja(F

tu) � Ja((F
ε)tu) for all t and as in the proof of theorem 1.3,

this implies that, for every interface u, we have

lim sup
t→∞

Ja(F
tu)

t
� v(F ).

The inequality lim inf t→∞ Ja(F
tu)/t � v(F ) can be obtained similarly.
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Appendix A. On the convolution with a distribution function

In the proof of lemma 2.3, we use lemma A.3. In order to prove this statement, we need two
preliminary properties.

Lemma A.1. Let h be a distribution function. Every monotone function ψ ∈ B for which
h ∗ ψ = 0 is the null function.

Proof. From the s-homogeneity, we have ψ(−∞) = h ∗ ψ(−∞) = 0. Similarly, we have
ψ(+∞) = 0. By monotony, we conclude that ψ is the null function. �

Lemma A.2. Let h 
= H be a distribution function. Every right continuous (or left continuous)
function ψ of bounded variation satisfying h ∗ ψ = ψ is constant.

Proof. Applying the Fourier–Stieltjes transform to h ∗ ψ = ψ , we obtain∫
R

eitx dh(x)

∫
R

eitx dψ(x) =
∫

R

eitx dψ(x), t ∈ R.

However the map t 
→ ∫
R

eitx dψ(x) is continuous [13] and, because h 
= H , the set{
t ∈ R :

∫
R

eitx dh(x) = 1

}
is countable [13]. Consequently, we have

∫
R

eitx dψ(x) = 0 for all t ∈ R. The lemma follows
from the uniqueness of the Fourier–Stieltjes transform. �

Lemma A.3. Let h 
= H be a distribution function.

(1) If there exists an increasing non-constant bounded function ψ such that h ∗ ψ � ψ , then
limn→∞ h∗n = 0.

(2) If there exists an increasing non-constant bounded function ψ such that ψ � h ∗ ψ , then
limn→∞ h∗n = 1.

Proof. (1) By considering the function (Prψ(x) − ψ(−∞))/(ψ(+∞) − ψ(−∞)) instead of
ψ , we can always assume that ψ is a distribution function. Hence, ψ and all functions h∗n ∗ψ

are non-negative.
In addition, using h ∗ ψ � ψ , we obtain the property that the sequence {h∗n ∗ ψ} is

decreasing and the following limit exists:

ψ∞ = lim
n→∞ h∗n ∗ ψ.

The function ψ∞ is increasing and right continuous. By s-homogeneity, we have h∗ψ∞ = ψ∞.
Lemma A.2 implies that ψ∞ is constant. We have ψ∞ � ψ and the condition ψ(−∞) = 0
implies that ψ∞ = 0.

We now apply Helly’s selection theorem in order to obtain the limit of a pointwise
convergent subsequence of {h∗n}. Let g = limi→∞ h∗ni be such a limit. By using
s-homogeneity and the commutation of convolutions, which holds for right continuous
functions of bounded variation vanishing at −∞, we have

ψ ∗ g = lim
i→∞

ψ ∗ h∗ni = lim
i→∞

h∗ni ∗ ψ = ψ∞ = 0.

By applying lemma A.1, we conclude that g = 0 and the first statement of the lemma follows.
The second statement can be proved similarly. �

Our last property serves the proof of uniqueness of the velocity of fronts.
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Lemma A.4. Let h 
= H be a distribution function. Every non-negative function ψ ∈ B such
that ψ(−∞) = ψ(+∞) = 0 and ψ � h ∗ ψ is the null function.

Proof. We assume that ‖ψ‖ > 0 and we prove that the conditions on ψ impose h = H .
For any x, α ∈ R, we have∫

(−∞,α]
ψ(x − y) dh(y) � h(α) sup

t�x−α

ψ(t)

∫
(α,+∞)

ψ(x − y) dh(y) � (1 − h(α)) sup
t�x−α

ψ(t).

Consequently, our function ψ satisfies the inequality

ψ(x) � h ∗ ψ(x) � h(α) sup
t�x−α

ψ(t) + (1 − h(α)) sup
t�x−α

ψ(t) (A1)

for every x, α ∈ R.
The conditions ψ(−∞) = 0 and ψ(+∞) = 0 imply that the quantity

x∞ = inf{x ∈ R : sup
t�x

ψ(t) = ‖ψ‖}

is a real number. Moreover, there exists a sequence {xn}n∈N of real numbers such that

lim
n→∞ xn = x∞ and lim

n→∞ ψ(xn) = ‖ψ‖.
Fix ε > 0 and let nε ∈ N be such that xn < x∞ + ε/2 for all n � nε. The relation (A1) implies
that for all n � nε we have

ψ(xn) � h(ε) sup
t�xn−ε

ψ(t) + (1 − h(ε)) sup
t�xn−ε

ψ(t)

� h(ε)‖ψ‖ + (1 − h(ε)) sup
t�x∞−ε/2

ψ(t).

By taking the limit n → ∞, we obtain

0 � (1 − h(ε))
(

sup
t�x∞−ε/2

ψ(t) − ‖ψ‖).
The definition of x∞ forces supt�x∞−ε/2 ψ(t) − ‖ψ‖ < 0. Therefore, h(ε) = 1 for all ε > 0.

Similarly, by introducing the number

x∞ = sup{x ∈ R : sup
t�x

ψ(t) = ‖ψ‖},

one proves that h(−ε) = 0 for all ε > 0 and the lemma follows. �

Appendix B. On the convergence of sequences of increasing functions

In all this work, in particular in the proof of the continuity of the front velocity, we use several
results about the convergence of sequences of increasing functions. These results are stated
and proved in the present section. The first one concerns limits of translations.

Lemma B.1. Let {αn}n∈N, αn ∈ R and let {ψn}n∈N, ψn ∈ I be two sequences such that
limn→∞ αn = α ∈ R and limn→∞ ψn = ψ . If ψ is continuous at x − α, then the following
limit exists and we have

lim
n→∞ T αnψn(x) = T αψ(x).
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Proof. Given ε > 0, let nε be such that −α − ε < −αn < −α + ε for all n > nε. Monotony
implies that for n > nε, we have ψn(x − α − ε) � ψn(x − αn) � ψn(x − α + ε) for all x ∈ R.
Using the definition of ψ , it follows that

ψ(x − α − ε) � lim inf
n→∞ ψn(x − αn) � lim sup

n→∞
ψn(x − αn) � ψ(x − α + ε), x ∈ R.

Since ε is arbitrary, we conclude that

P�ψ(x − α) � lim inf
n→∞ ψn(x − αn) � lim sup

n→∞
ψn(x − αn) � Prψ(x − α), x ∈ R,

from which the statement follows. �

One can extend the conclusion of the previous lemma to any convolution, provided that
the functions ψn are distribution functions. This is the scope of the following statement.

Proposition B.2. Let {hn}n∈N be a sequence of distribution functions such that
limn→∞ d(hn, h) = 0, where h is a distribution function and let {ψn}n∈N be a sequence of
distribution functions such that limn→∞ ψn = ψ . We have limn→∞ d(hn ∗ ψn, h ∗ ψ) = 0.

The next statement shows that proposition B.2 can alternatively be stated using the usual
convergence of distribution functions. This is used in the proof of existence of fronts using
approximations.

Lemma B.3. Let {hn}n∈N be a sequence of distribution functions and let h be a distribution
function. We have limn→∞ hn(x) = h(x) for all x where h is continuous iff
limn→∞ d(hn, h) = 0.

Proof of proposition B.2. Let εn = d(hn, h). Using the commutation hn ∗ ψn = ψn ∗ hn and
the properties of the convolution, the definition of d(·, ·) implies that

h ∗ ψn(x − εn) − εn � hn ∗ ψn(x) � h ∗ ψn(x + εn) + εn

for all n and all x. By applying lemma B.1 to the previous inequalities, we obtain

h ∗ ψ(x) � lim inf
n→∞ hn ∗ ψn(x) � lim sup

n→∞
hn ∗ ψn(x) � h ∗ ψ(x)

if h ∗ ψ is continuous at x. From lemma B.3, we obtain the desired conclusion. �

Proof of lemma B.3. By using the definition of the distance d(·, ·), it can immediately be
shown that the condition limn→∞ d(hn, h) = 0 implies limn→∞ hn(x) = h(x) at all continuity
points of h.

We prove the converse statement by contradiction. Assume the existence of ε > 0 and
of a subsequence {ni}i∈N such that d(hni

, h) > ε for every i. The definition of d(·, ·) then
implies the existence, for each i, of xni

∈ R such that either h(xni
− ε) − ε > hni

(xni
) or

hni
(xni

) > h(xni
+ ε) + ε. By taking a subsequence if necessary, we can assume that

either h(xni
− ε) − ε > hni

(xni
) for all i or hni

(xni
) > h(xni

+ ε) + ε for all i.

We assume that the first inequality holds. The other case can be completed similarly. By taking
once again a subsequence if necessary, we can assume that limi→∞ xni

= x∞ where x∞ ∈ R

or x∞ = −∞ or x∞ = +∞.
Assume that x∞ ∈ R and let x ∈ (x∞ − ε, x∞) be a point where h is continuous (these

points are dense by monotony of h). Then for all i sufficiently large, we have

h(x) − ε � h(xni
− ε) − ε > hni

(xni
) � hni

(x)
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and then, by taking the limit i → ∞, we obtain h(x) − ε � h(x), which is in contradiction
with the assumption ε > 0.

If x∞ = +∞, then for every x where h is continuous, there exists ix such that for every
i > ix , we have 1 − ε � h(xni

− ε) − ε > hni
(xni

) � hni
(x). By taking the limit i → ∞ and

then x → +∞, we obtain 1 − ε � 1, which is a contradiction.
If x∞ = −∞, we have h(xni

− ε) − ε > hni
(xni

) � 0 and by taking the limit i → ∞, we
obtain −ε � 0, which is also a contradiction. �
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