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Coupled map lattices (CML) are basic models for the time evolution of nonlin-
ear systems which, above all, are extended in space or involve many individual
units. The characteristic features of CML are

• discrete time dynamics
• discrete nature of the underlying space (lattice or network)
• the local variables consist of real numbers or real vectors.

Formally speaking, a CML is a discrete time dynamical system generated
by a mapping acting on real (vector) sequences. The typical and most studied
example is the model introduced by Kaneko in 1983 and given by the following
iterations

ut+1
s = (1− ε)f(ut

s) +
ε

2
(f(ut

s−1) + f(ut
s+1)) t ∈ N, ε ∈ [0, 1]

where ut
s ∈ R and f is a real mapping.

Depending on the context, the configurations {ut
s} represent the spatial

profile of a chemical concentration, of a population density, of a velocity field,
etc. In these cases, the configurations are bounded sequences, sometimes finite
or periodic. Some systems however require unbounded configurations. This
is the case for instance in the Frenkel-Kontorova model of particle chains
where ut

s represents the position along the real line of the sth particle, see
the chapters on monotone dynamics [Floŕıa, Baesens and Gómez-Gardenes],
[Baesens] and [Coutinho].1

As shown by the basic model, the dynamics of a CML is governed by
two competing terms; an individual nonlinear reaction represented by f and
a spatial interaction (coupling) with variable intensity ε. In the basic model,
the interaction is a convolution operator which represents a diffusive coupling.
These two terms are applied successively, a characteristic feature of CML, and
1 We refer to the chapters by using the name(s) of their author(s).
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this ensures that bounded initial configurations remain bounded (provided
that f is bounded). However, CML are not restricted to such composition nor
to convolution couplings and many other models have been considered.

Their simple formulation make CML a paradigm of nonlinear spatially
extended dynamical systems. In particular, CML are specially designed to fa-
cilitate computer simulations over large space-time domains. The simulations
exhibit an extraordinary large panel of behaviours upon changes in the lo-
cal map and in the interaction (or simply in their parameters). This diverse
phenomenology motivated the application of CML to the simulation of real
systems. For instance, a spectacular application pointed out to us by Pierre
Guiraud is afforded by the simulation of cloud formation by a CML derived
from fluid dynamics equations2.

In the endeavour to describe CML analytically, various methods, tech-
niques and tools have been borrowed from the theory of Dynamical Sys-
tems (stability analysis, Lyapunov exponents, bifurcations, symbolic dynam-
ics, etc.). Some results have been confirmed or obtained in a rigorous math-
ematical framework (e.g. global and partial synchronisation, front dynamics,
etc.). As far as Mathematics is concerned, CML form a proper source of prob-
lems since they are dynamical systems with infinite dimensional phase space
and since they do not satisfy the usual assumptions on dynamics for large
physically relevant sets of parameters (e.g. uniform hyperbolicity, prescribed
symbolic dynamics, etc.).

For a more complete exposition of the origins of CML, of their motivations,
and for an overview of problems, we refer to chapter introductions, especially
of [Bunimovich] and [Just and Schmüser].

The purposes of the meeting CML2004 were to present a survey of the
theory of CML and of related spatially extended systems (lattice dynami-
cal systems, discrete time systems with continuous space, integro-differential
equations, etc.), and to stimulate debates on open problems and future direc-
tions of research. In order to cover both physical and mathematical aspects,
to avoid overlap between lectures and to appeal to a broad audience, 15 spe-
cialists were invited to present results on a given theme. By doing so, we were
conscious of the fact that many significant contributors to the theory of CML
could not present their results. But we had the feeling that a limited number
of lectures could bring more material to a large audience than a series of talks.

This volume collects the notes written by the lecturers, sometimes with
the help of collaborators. The themes cover numerical, theoretical and math-
ematical aspects of various spatially extended systems. More than the results
themselves, concepts, techniques and tools developed for their analysis are pre-
sented. Since the investigation of a model on its own without any relationship
to concrete situations has only little interest, examples of comparison and of
2 Go to http://nis-lab.is.s.u-tokyo.ac.jp/∼nis/animation.html to see the

movie Cloud simulation by CML and to download the related paper [R. Miyazaki,
S. Yoshida, Y. Dobashi and T. Nishita, Proc. of Pacific Graphics (2001) 363–372)].
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adaptation to physical and biological problems are given. The presentation is
by no means complete, but we hope it can serve as a basis for future research
on spatially extended systems.

Before going into details we present a schematic overview of most sig-
nificant phenomena in Fig. 1. This picture collects the dynamical regimes,
together with the transitions between regimes, which occur depending on the
local map and on the interaction intensity. Naturally, the phenomenology here
has been fairly simplified. It does not make any distinction between various
forms of interaction (local coupling or global coupling). More importantly, it
does not make any distinction between various spatially extended systems. To
a smaller extent, neither does it take into account the lattice size dependence
nor the dependence on boundary conditions.3 Still we hope that this figure
can guide the reader through the book.
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Fig. 1. Schematic representation of the phenomenology of CML (and of related
models) versus the local map and the coupling intensity. Obviously, the phenomena
may extend to larger domains than those indicated here. For instance, synchronisa-
tion may occur for any local map provided that the coupling (and the lattice size)
is suitably chosen

The chapters have been assembled into 4 thematic parts. The first two
parts are devoted to the description of statistical and geometric properties of
CML. The third part collects results on the dynamics of monotone spatially
extended systems. The last part concerns the introduction and analysis of
models motivated by dynamical problems in Biology.
3 Apart from an example in Sect. 5 of [Bunimovich], the effect of boundary condi-

tions remain largely unravelled.
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1 Statistical Properties of Coupled Chaotic Maps

Inspired by the analogy with spin models in Statistical Mechanics which
emerges from symbolic dynamics, the consideration of global statistical prop-
erties of chaotic CML started soon afterward the introduction of CML, in 1988
precisely. The analogy suggests that, typically, phase transitions should occur
when the coupling parameter increases. The transition is expected to split
a unique space-time chaotic phase (high temperature) into several ordered
phases (low temperature). However, the reputation of Statistical Mechanics
technical difficulties warns that any attempt on a rigorous description of a
phase transition in CML would face arduous problems.

To start with, characterising space-time chaotic phases is a problem in its
own which has been the preliminary focus of many studies. A mixing hyper-
bolic dynamical system on a compact set has a (unique) natural phase with
several equivalent characteristic properties. This equivalence fails in infinite
lattices. Characterising the natural measures then needs to be addressed prior
to any other statistical property in CML.

Various proposals have been made. Using again analogy with Statistical
Mechanics, a natural measure should be the Gibbs measure of an appropriate
Hamiltonian on the space-time lattice [Just and Schümser], [MacKay] and
[Jarvenpää]. In the framework of the theory of Dynamical Systems and with
an ergodic theorem in mind, a natural measure should describe the statistics
of orbits issued from “typical” initial conditions, [Bunimovich] and [Keller and
Liverani]. In the dual formulation of the dynamics, a natural measure should
be the limit of iterations of any “regular” initial distribution, [Bunimovich],
[MacKay] and [Keller and Liverani].

With a definition provided, the question of uniqueness of the natural mea-
sure in infinite lattices comes to the centre of attention. Contrary to the case
of finite lattices of weakly coupled chaotic maps, requiring that all finite di-
mensional projections be absolutely continuous does not ensure uniqueness
[Jarvenpää]. On another hand, due to infinite extension, some transients may
last forever and can thus be defined as a proper phase; a phenomenon which
does not exist in finite lattices [Just and Schmüser] and [MacKay]. Unique-
ness can be shown however for small couplings in a suitable Banach space
(of measures having finite dimensional marginals with at most exponentially
growing total variation) [Keller and Liverani].

Two distinct approaches to phase transitions have been proposed. One ap-
proach is based on the formal derivation of a master equation for probabilities
associated with atoms of the symbolic partition. It consists in showing that
some transitions between atoms depend on the coupling parameter [Just and
Schmüser]. However, this approach can be hardly controlled from a mathe-
matical point of view. More importantly, changes in transition probabilities
correspond to changes in the topology of the repeller (bifurcation) rather than
to changes in its statistics only. Such changes may not be due to infinite spatial
extension but may also occur in finite lattices. In this case, the term “phase
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transition” would not be appropriate [Bunimovich], [Just and Schmüser and
[MacKay].

An alternative mathematically rigorous approach is to construct CML with
prescribed phase transitions. The CML consist in piecewise affine mappings
based on probabilistic cellular automata (PCA) which have been proved to
possess a phase transition, in particular Toom’s PCA [Just and Schmüser] and
[MacKay]. Coupling there is introduced by letting the local map depend on
symbolic states at neighbouring sites. Such models fairly differ from classical
CML. However, this trick allows to overcome the unsolved problem of deter-
mining the symbolic dynamics of a CML for an arbitrary coupling parameter.

2 Geometric Aspects of Lattice Dynamical Systems

Beside focusing on specific phenomena such as phase transitions, and as sug-
gested by the explicit dependence on the coupling parameter, a standard issue
in CML is to describe the dynamics over the entire coupling parameter range.
Due to competitions between local and interaction terms and between linear
and nonlinear terms, this is a formidable task which has been accomplished
only in particular cases. In arbitrary lattices, only the extreme regimes of weak
and of strong couplings can be considered as satisfactorily described.

In view of perturbation theory, the dynamics at each site in a CML with
weak coupling can be regarded as a local map perturbed by contributions
from other sites. Accordingly, the behaviours in uncoupled and in weakly
coupled regimes should be qualitatively the same provided that the local map
dynamics is robust to perturbations.

The simplest case is when the local map has two stable fixed points. Then
if the coupling parameter is small enough, just as in the uncoupled case the
CML has an infinite set of stable fixed points on which the action of space
translations has positive topological entropy [Afraimovich]. This property is
called spatial chaos and extends to weakly coupled lattices of local maps with
stable periodic orbits.

When the local map is strongly chaotic, space-time chaos exists for small
coupling. That is to say, when the local map has a hyperbolic set with pos-
itive topological entropy, then the CML with sufficiently weak coupling has
a hyperbolic set on which the Z

2-action of space-time translations also has
positive topological entropy.

In spite of being intuitively simple, weak interaction regimes gave the op-
portunity to adapt to lattice systems various dynamical systems techniques,
e.g. persistence of uniform hyperbolicity under weak coupling, symbolic dy-
namics [Afraimovich] and [MacKay]. They also allowed to obtain results which
are specific to lattice dynamical systems, e.g. description of space-time peri-
odic configurations as orbits of a low-dimensional map, density of space-time
(quasi-)periodic configurations with given (quasi-)period [Afraimovich].
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Whereas structural stability of uncoupled systems does not depend on the
symmetry of translation invariance and extends to some heterogeneous CML,
in strongly coupled regimes, the dynamics relies on this symmetry.

The basic strongly coupled regime in translation invariant CML is syn-
chronisation. In this context synchronisation means that the subset of con-
stant configurations, namely the diagonal, attracts all orbits in phase space
[Afraimovich] and [Maistrenko, Popovych and Tass].

Synchronisation takes place when all transverse eigenvalues of the mapping
derivative computed at any point on the diagonal have modulus uniformly
smaller than 1. The synchronisation is said to be chaotic if the tangential
Lyapunov exponent on the diagonal (which in CML is nothing else but the
Lyapunov exponent of the local map) is positive.

In the case where only the transverse Lyapunov exponents on the diagonal
are negative (which happens when the coupling parameter decreases from the
synchronisation regime) the basin of attraction of the diagonal is only local
and may have a complex riddled structure, a phenomenon called partial syn-
chronisation. Riddled basins are not limited to CML but emerge in a broader
context, specifically in equivariant dynamical systems [Ashwin].

Riddled basins only concern a neighbourhood of the diagonal. The rest of
phase space may contain orbits not asymptotically approaching the diagonal,
a reminiscence of weakly coupled regimes. A simple example is a stable peri-
odic orbit [Maistrenko, Popovych and Tass]. An example with a dense subset
of unstable periodic orbits has also been exhibited [P. Glendinning, Milnor
attractors and topological attractors of a piecewise linear map, Nonlinearity
14 (2001) 239–257].

3 Spatially Extended Systems with Monotone
Dynamics

The typical situation for which the dynamics of a spatially extended system
can be reasonably analysed over the whole coupling parameter range is that of
systems with monotone dynamics. If an initial configuration lies below another
initial configuration, then this ordering is preserved at later times.

Monotonicity is a classical property in parabolic partial differential equa-
tions (maximum principle). In lattices of coupled ordinary differential
equations, it follows from cooperativity [Baesens]. For instance, it holds in the
paradigmatic Frenkel-Kontorova model when assuming strong enough dissi-
pation. In CML monotonicity holds for every ε ∈ [0, 1] provided that the local
map f is an increasing function [Coutinho and Fernandez].

With the dynamics of chains in periodic potentials in mind, monotonic-
ity can be completed with translation invariance and periodicity. Periodicity
means that if the difference between two initial configurations equals, say 1
at all sites, then this difference remains unchanged at later times.



The CML2004 Project 7

A monotone periodic translation invariant system has a regular and uni-
form nonlinear dynamics. Either each orbit remains sandwiched between sta-
tionary configurations (pinned regime) or all orbits indefinitely increase (or
decrease) with finite velocity (sliding regime). In the sliding regime the propa-
gation velocity is unique in phase space and there are corresponding travelling
waves with rotationally ordered shape. The propagation velocity continuously
depends on the system parameters. In particular, it is known to be positive
for sufficiently large driving force (sufficiently large local map asymmetry in
CML).

This phenomenology does not depend on the details of the model, a system
either with continuous time [Baesens] or with discrete time. Neither it does
depend on the details of the spatial interaction (discrete or continuous dif-
fusion or both) [Coutinho and Fernandez]. This justifies substituting certain
models by more convenient ones. In particular, one may assume the dynamics
of lattice systems with small step sizes (discrete diffusion) to be suitably repre-
sented by the dynamics of a system defined on the whole real line (continuous
diffusion), or vice-versa.

Excepted when generated by a driving force, transport may also be caused
by a time dependent action on the system (non-autonomous system). In par-
ticular, switching on and off an asymmetric potential or switching on and off
the diffusive interaction may also generate propagation (ratchet effect) [Floŕıa,
Baesens and Gómez-Gardeñes].

Even though the orbits remain bounded between two stationary configura-
tions, there may be propagation. In this case, propagation concerns interfaces
(discommensurations) between two contiguous stable stationary configura-
tions. (Interfaces between a stable and an unstable configuration can also be
relevant.) Bistable systems provide the basic framework where propagation of
interfaces between stable phases can be analysed [Coutinho and Fernandez].

Bistable spatially extended systems satisfy monotonicity, translation in-
variance and the existence of two stable constant configurations at distance,
say 1. In discrete time systems with arbitrary spatial interaction, the dynamics
of interfaces is analogous to the previous one. There exists a unique asymptotic
horizontal velocity for all interface orbits, this velocity depends continuously
on the system parameters, and there are travelling waves (fronts).

4 Specific Lattice Dynamical Systems

In certain lattices with few sites, the dynamics can be described in the whole
coupling range even though monotonicity is not assumed. A typical example
with rich phenomenology is the Kuramoto model of globally coupled oscil-
lators, a system of coupled ordinary differential equations. In this model,
the sequence of bifurcations generated by decreasing the coupling is well-
established [Maistrenko, Popovych and Tass]. Starting from a globally at-
tracting synchronised orbit, bifurcations split asymptotic configurations into
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clusters with synchronised motions. For smaller couplings, clusters break into
independent oscillators. In lattices with a large enough number of sites, this
scenario includes a chaotic attractor for intermediate couplings. Motivated by
synchronisation caused neurological diseases in brain function, the Kuramoto
model has been employed to simulate the impact of a stimulation on an as-
sembly of neurons.

The mechanisms leading to synchronisation in networks of neurons have
been thoroughly investigated taking into account detailed neurons and synaps-
es characteristics [Ermentrout]. In a different context where the neurons have a
excitable dynamics and not an oscillatory one, propagating waves with regular
or lurching motion have been exhibited. Some of these waves are the analogous
of travelling fronts in systems with monotone dynamics mentioned above.

Another class of biological systems which comprehension involves network
dynamics is that of genetic regulatory networks. The dynamical characteristics
of the mechanisms involved in this context are a local piecewise contracting
dynamics combined with a complex interaction graph [de Jong and Lima].
This combination is rather original in the framework of lattice dynamical
systems and the resulting dynamics has only been completely described in
networks with simple graphs.


