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A sufficient condition for global synchronization in coupled map lattices (CML) with translation
invariant coupling and arbitrary individual map is proved. As in [Jost & Joy, 2001] where CML
with reflection invariant couplings are considered, the condition only involves the linearized
dynamics in the diagonal, namely for all points in the diagonal, the derivative must be contractive
in all transverse directions. In addition to this result, a (weaker) condition that ensures the CML
attractor to be composed of either 2-periodic or constant configurations, is also obtained.
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Synchronization is probably the most commonly
observed dynamical phenomenon in interacting
(coupled) nonlinear systems. Generally speaking,
it is said to occur in a multidimensional dynam-
ical system when the attractor lies inside a
one-dimensional subset of the phase space. The
knowledge of the trajectory of a single coordi-
nate allows to determine all coordinate trajectories
[Boccaletti et al., 2006; Pikovsky et al., 2001]. In
other words, all components asymptotically evolve
“in phase”, possibly in a chaotic motion [Pecora &
Caroll, 1990]. In practice, the phenomenon takes
various forms upon the system under consideration.
For instance, phase synchronization takes place in
systems of coupled oscillators [Fujisaka & Yamada,
1983] and master-slave, or generalized synchroniza-
tion are possible phenomena in unidirectionally cou-
pled systems [Hunt et al., 1997; Rulkov et al., 2001;
Tresser et al., 1995].

Another specific form of synchronization occurs
in dynamical systems with symmetry where there
is a convergence to the symmetry fixed point set

(which is invariant under dynamics, see e.g. [Ashwin
et al., 1996]). Challenging problems in this frame-
work then concern conditions on parameters (or
on components) for synchronization. These condi-
tions often involve transverse Lyapunov exponent in
order to specify the basin of attraction of the sym-
metry fixed point set. In particular, a seminal result
[Alexander et al., 1992] states that this basin has
positive Lebesgue measure (in phase space) when
all transverse Lyapunov exponents are negative, for
Lebesgue almost every point in the invariant set.
Moreover, it is likely to have a fractal “riddled struc-
ture” (see the chapter by P. Ashwin in [Chazottes
& Fernandez, 2005] for a mathematical definition),
and actually presents such a structure in various
examples. However, Ashwin et al. [1996] showed
that this basin is indeed a neighborhood of the
invariant set when the supremum of all transverse
Lyapunov exponents, with respect to all ergodic
measures supported in the invariant set, is negative.

Naturally, and as observed in [Ashwin et al.,
1996], without any further specification of the
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dynamics, these results are optimal and one can-
not expect to control the global behavior. In some
cases however, it is possible to determine the fate
of every orbit in phase space from properties of the
linearized dynamics in the invariant set.

CML have been introduced at the beginning of
1980s as simple discrete-time models of reaction–
diffusion systems [Chazottes & Fernandez, 2005;
Kaneko, 1993]. Their specificity resides in the def-
inition of their mapping which is the composition
of an individual map and a linear coupling. This
presents the double advantage of being well-adapted
to numerical simulations and to mathematical anal-
ysis. Recently [Lu & Chen, 2004] has established
and analyzed synchronization conditions in CML
with arbitrary linear coupling operators, mostly in
the absence of symmetry but yet with invariant
diagonal.

For reflection invariant coupled map lattices
(CML), [Jost & Joy, 2001] proved that if all trans-
verse eigenvalues of the jacobian matrix are contrac-
tive for all points in the diagonal (the invariant set
in this case), then all points in phase space asymp-
totically approach the diagonal, a property called
global synchronization. Although slightly stronger
than the previous one, this condition is much sim-
pler to check in practice.

In this Letter, we focus on translation invariant
(but not necessarily reflection invariant) CML on
periodic lattices. Translation invariance is usually
assumed in most studies [Chazottes & Fernandez,
2005; Kaneko, 1993] as it reflects the simplify-
ing assumptions that the individual systems are
all identical and that the coupling is of diffusive
type. As in [Jost & Joy, 2001], we show that global
synchronization holds provided that all transverse
directions are contractive for all points in the diag-
onal. Our condition is actually a bit more general
than the one in [Jost & Joy, 2001] and the tech-
nique is different. The results, in particular, com-
plete a previous result in [Lin et al., 1999] on global
synchronization for lattices of 2, 3 and 4 coupled
logistic maps.

A translation invariant CML on the periodic
lattice ZL := {s ∈ Z modL} (L > 1) is the dynam-
ical system generated by the following induction
relation in R

xt+1
s =

∑
n∈ZL

cnf(xt
s−n), s ∈ ZL. (1)

Here the coefficients cn are non-negative (cn ≥ 0)
and normalized (

∑
n∈ZL

cn = 1). The most frequent

examples are respectively, the asymmetric nearest
neighbor coupling, the symmetric one (L > 2) and
the global coupling for which the coefficients are
respectively given by (ε ∈ [0, 1])

cn =




1 − ε if n = 0
ε if n = 1
0 otherwise

, cn =




1 − ε if n = 0

ε

2
if n = ±1

0 otherwise

and cn =




1 − ε if n = 0

ε

L
otherwise

More generally, a coupling on the periodic lattice
with L sites can be defined from any normalized
sequence {γn}n∈Z of non-negative coefficients by
summing over the periods, namely

cn =
∑
k∈Z

γn+kL.

The individual map f in (1) is assumed to possess
an invariant interval I (which may be the whole
R) on which it satisfies the following inequality for
some K > 0 (i.e. f is Lipschitz continuous)

|f(x) − f(y)| ≤ K|x − y|, ∀x, y ∈ I.

We assume that K is the smallest of such numbers.
Note that if f is continuously differentiable, then
K is the maximum of |f ′(x)| on I. However, f need
not be differentiable for our purpose.

The CML (1) leaves invariant the diagonal in
IZL . For any point xs = x (s ∈ ZL) on this diago-
nal, the eigenvalues of the jacobian matrix associ-
ated with the CML derivative (which exists when
f is differentiable) can be easily computed. Indeed,
since this matrix commutes with translations on the
lattice ZL, its eigenvectors in C

ZL are the elements
ek (k = 0, . . . , L − 1) of the Fourier basis, where
(ek)s = (1/

√
L)e

2iπks
L (s ∈ ZL). A simple calcula-

tion shows that the eigenvalues are given by f ′(x)ĉk

where

ĉk =
∑

n∈ZL

cne−
2iπkn

L .

In particular, f ′(x)ĉ0 = f ′(x) is the eigenvalue along
the diagonal and all other eigenvalues correspond to
transverse directions. The quantities ĉk and ĉL−k

are complex conjugate for k �= 0, L/2 (and equal
in the case of reflection invariant couplings, i.e.
c−n = cn). This implies that the contraction rate
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in the subset of R
ZL normal to the diagonal and

defined by

{aek + āeL−k:a ∈ C}
if k �= 0, L/2 (and by

{
aeL/2:a ∈ R

}
if k = L/2), is

equal to |ĉk|. As a consequence, the normal Lya-
punov exponents for any point on the diagonal,
write λ(x)+ log|ĉk| (k = 1, . . . , L− 1) where λ(x) is
the individual map Lyapunov exponent evaluated
at x ∈ I. According to Theorem 2.12 in [Ashwin
et al., 1996], the condition

log(K) + log max
1≤k≤L−1

|ĉk| < 0

ensures the existence of a neighborhood of the
diagonal in IZL in which the orbit of every point
asymptotically approaches the diagonal. Due to the
specific structure of the CML (1), the very same
condition actually implies that convergence to the
diagonal holds for every point in phase space in such
systems.

Theorem. The condition

K max
1≤k≤L−1

|ĉk| < 1, (2)

implies global synchronization of the CML. That is
to say, the following limit holds

lim
t→∞max

s∈ZL

|xt
s − xt

s+1| = 0

for all initial configurations {x0
s} ∈ IZL .

(The proof is given below.) Several comments on
this result can be made. First, since the definition
of ĉk implies max1≤k≤L−1 |ĉk| ≤ 1, the condition (2)
may hold in the case where K > 1 and in partic-
ular, for chaotic individual maps as it happens in
the case of chaotic synchronization of CML. (On
the other hand, global synchronization always hold
when K < 1 because the whole CML is contracting
in this case.)

Moreover, the coupling eigenvalues have the fol-
lowing limit (whose proof is given after the proof of
the Theorem)

lim
L→∞

max
1≤k≤L−1

|ĉk| = 1. (3)

This implies that, for any coupling coefficient
sequence {γn}n∈Z and given individual map (with
K > 1), the condition (2) becomes stronger and is
hardly satisfied when the lattice size increases (and
actually exceeds few sites in common examples).
Alternatively, given a coupling coefficient sequence
{γn}n∈Z and a number of sites L, the condition (2)

may not hold whenever K exceeds some threshold.
For instance, for the symmetric nearest neighbor
coupling defined above, L = 2 or 3 and K > 1, the
condition (2) holds for all ε in some interval con-
tained inside [0, 1]. However, if L = 4 (resp. L = 6),
the same condition holds — for at least one value
of ε in [0, 1] — only if K < 3 (resp. K < 5/3).

Proof of the Theorem. The proof is not as triv-
ial as the presentation may suggest. The natural
strategy which consists in controlling the dynam-
ics of transverse modes by applying the triangle
inequality, does not work for L > 2. Indeed, this
method provides upper bounds for both the mod-
ulus of transverse modes at time t and at time
t + 1, but with no direct relationship between the
two quantities. The alternative strategy which con-
sists in directly estimating the difference xt

s − xt
s+1

does not work either when L exceeds a threshold,
because it implies the whole spectrum and leads to
the condition K < 1. Therefore, one has to find a
better combination of coordinates in order to find
the appropriate expression.

We consider the euclidean scalar product and
associated norm ‖ · ‖ in C

ZL and the euclidean scalar
product and associated norm ‖ · ‖R in R

ZL . Let
M1 be the diagonal in IZL and let M⊥

1 := {x ∈
IZL :

∑
s∈ZL

xs = 0} be its orthogonal complement.
Let also C denote the coupling operator, i.e.

(C(x))s =
∑

n∈ZL

cnxs−n, s ∈ ZL

where x = {xs}s∈ZL
. In a first step, we show that

global synchronization occurs under the condition
K maxx∈M⊥

1 : ‖x‖R=1 ‖C(x)‖R < 1. Let R denote the
(right) translation operator. Since the norms ‖ · ‖R

and maxs∈ZL
|xs| are equivalent, global synchro-

nization is equivalent to the limit

lim
t→∞

∥∥xt − R(xt)
∥∥

R
= 0,

for all x0 ∈ IZL . The CML dynamics commutes
with R and since x − R(x) ∈ M⊥

1 for all x ∈ IZL ,
we obtain the following inequality∥∥xt+1 − R(xt+1)

∥∥
R

≤ K max
x∈M⊥

1 : ‖x‖R=1
‖C(x)‖R‖xt − R(xt)‖R

An induction then completes the first step.
In a second step, we show that

maxx∈M⊥
1 : ‖x‖R=1 ‖C(x)‖R = max1≤k≤L−1 |ĉk|. We

identify every vector {xs} ∈ R
ZL with the vector

{zs} ∈ C
ZL where zs = xs for all s. It follows that
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every vector x ∈ M⊥
1 can be viewed as belonging

to the subspace orthogonal to the diagonal in C
ZL .

Therefore, this vector writes x =
∑L−1

k=1 xkek with
complex coordinates xk. Since ek are the eigenvec-
tors of C in C

ZL with eigenvalues ĉk we have

C(x) =
L−1∑
k=1

xk ĉkek,

and then ‖C(x)‖ ≤ max1≤k≤L−1 |ĉk|‖x‖. Since
C(x) ∈ R

ZL and ‖x‖ = ‖x‖R, we have actually
showed that

max
x∈M⊥

1 :‖x‖R=1
‖C(x)‖R ≤ max

1≤k≤L−1
|ĉk| .

It only remains to show that the inequality is indeed
an equality. Let k′ ∈ {1, . . . , L − 1} be such that

|ĉk′ | = max
1≤k≤L−1

|ĉk| .

The normalized vector v = (1/
√

2)(ek′ + eL−k′)
(resp. v = eL/2 if k′ = L/2) has real coordinates
that belong to M⊥

1 and satisfy ‖C(v)‖ = |ĉk′ | since
ĉk′ and ĉL−k′ are complex conjugate. In other words,
there exists a normalized vector v ∈ M⊥

1 such
that ‖C(v)‖R = max1≤k≤L−1 |ĉk|. The theorem is
proved.

Proof of relation (3). Firstly, the triangle inequality
implies that for every n′ > 0 we have∣∣∣∣∣
∑
n∈Z

γne−
2iπn

L

∣∣∣∣∣ ≥
∣∣∣∣∣∣

∑
|n|≤n′

γne−
2iπn

L

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
|n|>n′

γne−
2iπn

L

∣∣∣∣∣∣ .
The sequence {γn} is assumed to be summable.
Thus for every δ > 0, there exists nδ such that∣∣∣∣∣∣

∑
|n|>nδ

γne−
2iπn

L

∣∣∣∣∣∣ ≤
∑

|n|>nδ

γn < δ.

Now, let δ < 1 and define Lδ to be sufficiently large
so that for all L ≥ Lδ, we have cos(2πn/L) ≥ 1− δ
for all |n| ≤ nδ. The two estimates imply that the
following inequality holds for L ≥ Lδ∣∣∣∣∣∣

∑
|n|≤nδ

γne−
2iπn

L

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

∑
|n|≤nδ

γn cos
(

2πn

L

)∣∣∣∣∣∣
≥ (1 − δ)

∑
|n|≤nδ

γn ≥ (1 − δ)2

It results that |ĉ1| ≥ (1 − δ)2 − δ for L ≥ Lδ and
the desired limit (3) follows. �

To conclude this Letter, we mention that global
synchronization can be seen as a special case of con-
vergence to a spatially periodic configuration sub-
set with prescribed period, namely period 1 in the
present case. The arguments of the proof above can
be adapted in order to obtain a condition such that
the CML attractor is composed of periodic config-
urations with (not necessarily minimal) period, a
given divisor of L. We only consider here the sit-
uation where this period is 2 and we provide the
corresponding condition.

Proposition. Assume that L is even and that the
following condition holds

K max
1≤k≤L−1:k �=L/2

|ĉk| < 1. (4)

Then for any initial configuration {x0
s} ∈ IZL , we

have

lim
t→+∞max

s∈ZL

|xt
s − xt

s+2| = 0.

Proof. We start by observing that for all x ∈ IZL ,
we have x − R2(x) ∈ M⊥

2 where

M⊥
2 =


x ∈ IZL :

∑
s∈ZL

xs = 0

and
∑
s∈ZL

(−1)sxs = 0




is the hyperplane orthogonal both to the diagonal
and to the linear subspace generated by eL/2. As in
the proof of the Theorem, we conclude that the con-
dition K maxx∈M⊥

2 :‖x‖R=1 ‖C(x)‖R < 1 implies the
limit limt→+∞

∥∥xt − R2(xt)
∥∥

R
= 0 which is equiva-

lent to the desired result. Now, by definition of M⊥
2 ,

every configuration x ∈ M⊥
2 (viewed as an element

of C
ZL) writes x =

∑
1≤k≤L−1, k �=L/2 xkek. As in the

proof of the theorem, this implies that

max
x∈M⊥

2 :‖x‖R=1
‖C(x)‖R = max

1≤k≤L−1:k �=L/2
|ĉk|

The proposition then easily follows. �
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