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We study the dynamics of a multidimensional coordinate-dependent mapping governing the
time evolution of a population spread over a one-dimensional lattice. The nonlinearity is of
mean-field type and the dependence on coordinates, given by the so-called fitness, allows to take
into account the spatial heterogeneities of the habitat. A global picture of the dynamics is given
in the case without diffusion and in the case with diffusion when the fitness is homogeneous and
leads to a periodic orbit. Moreover it is shown that, periodic fitnesses close to homogeneous
ones impose their periodicity on the asymptotic dynamics when the latter is time-periodic.

1. Introduction and Definitions

The time evolution of spatially extended systems
may be represented by multidimensional nonlinear
dynamical systems, such as PDEs, systems of cou-
pled ODEs, Coupled Map Lattices, etc. [Cross &
Hohenberg, 1993; Kaneko, 1993]. Often these mod-
els are chosen homogeneous to comply with the as-
sumption that the dynamics should not depend on
the spatial location but only on the field variable.

However for some systems, it may be more
realistic to consider dynamics which also depend on
the spatial location. For instance, in a model rep-
resenting the time evolution of a population spread
over some habitat, the spatial dependence means
that changes in the local quality of the habitat are
allowed. In such systems, a specific question arises:
How do these heterogeneities affect the asymptotic
dynamics?

There are essential results related to the
effects of heterogeneities in reaction–diffusion equa-
tions representing the dynamics of populations
(see e.g. [Cantrell & Cosner, 1991] and references
therein). In these models, the dynamics is based
on a logistic law depending on a local variable, and
the interaction is of diffusive type. Precisely, at
each spatial point, the nonlinear term compensat-
ing the linear growth depends only on the local pop-
ulation density. Adding the coupling, the evolution
at each spatial point depends essentially on states
in a (small) spatial neighborhood of this point.

However, assuming the information propagates
sufficiently fast, the local nonlinear evolution may
be influenced by all the states of the habitat rather
than only by the neighboring states. The model we
propose takes this effect into account. The model
is also based on a logistic law and on a diffusive in-
teraction, but the nonlinear compensation depends
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on the total population through a mean-field term,
i.e. is given by the sum of local populations. The
goal of the paper is to investigate the asymptotic
behavior in this model.

The model represents the time evolution of
a population spread over a lattice of finite length,
say L ∈ N. At each site 1 ≤ s ≤ L of the lat-
tice, we have a local population density denoted
by us with us ∈ [0, 1]. The total population
should be bounded. Up to normalization, this
bound can be set to 1. Hence the phase space is
a simplex contained in the Euclidean unit cube of
dimension L

M =

{
u ∈ [0, 1]L :

L∑
s=1

us ≤ 1

}
,

endowed with the `1-norm. A vector u = {us}Ls=1

is called a configuration.
The evolution of the population is given by the

iterations of the map T defined on M by

(Tu)s = fsus

(
1−

L∑
r=1

ur

)

+ D(us−1 − 2us + us+1), 1 ≤ s ≤ L

with periodic boundary conditions (i.e. x0 = xL
and xL+1 = x1) or Neumann boundary conditions
(i.e. x0 = x1 and xL+1 = xL). Each initial condi-
tion u in M1 generates an orbit {ut}t∈N for which
the state ut represents the population density con-
figuration at time t.

The configuration f = {fs}Ls=1 ∈ RL is called
the fitness. Its coordinates fs are assumed to be
non-negative. We will use in the sequel its mini-
mum and maximum values

m = min
s
fs and M = max

s
fs .

D ≥ 0 is the diffusion coefficient.
It would be more sensible to replace the term

1−∑r ur in the definition of T by (1−∑r ur)/L to
indicate that each local population grows linearly
with a rate proportional to a local term which is
the same ratio of the global population. But this
correction would be the same as dividing the fitness
fs by L. The present definition has the advantage
of dealing with a fitness independent of L, and thus
normalized in this sense.

As argued in [Tereshko & Lee, 1999], the map
T can be used to represent the foraging behavior
of a honeybee colony. From this point of view, the
variable uts represents the local employed foragers
density and then 1 −∑r ur is the total density of
unemployed foragers. Our model indicates that the
recruitment rate of employed foragers at each site
is assumed to depend on the total population of
unemployed foragers.

For L = 1, the map T reduces to the lo-
gistic map x → f1x(1 − x) (see e.g. [Collet &
Eckmann, 1981; Katok & Hasselblatt, 1995] for the
corresponding dynamical properties). Hence, for
L > 1, the map T can be viewed as a multidimen-
sional extension of the logistic map.

In the sequel, we investigate the dynamics of
T . Firstly, we give conditions for this dynamics to
be meaningful and we analyze a simple fixed point
(Sec. 2). Then we study the regime without dif-
fusion (Sec. 3) and the cases of homogeneous and
periodic fitnesses with diffusion when the dynam-
ics is time-periodic (Secs. 4 and 5). In the latter
cases, we show the existence of periodic orbits, with
a shape imposed by the shape of the fitness, and we
study their stability. Stability is always understood
as asymptotic stability.

2. Basic Properties

2.1. Conditions for the existence
of meaningful dynamics

Firstly we notice that if us = δs, 1 for all s, where
δs, n is the Kroenecker’s symbol, we have u ∈ M
and, since (Tu)1 = −2D, Tu 6∈ M if D > 0, which
is meaningless.

To be sure that the states of any orbit are al-
ways non-negative, the phase space is restricted to
a (positively) invariant set contained inM. Thanks
to the boundary conditions we have for any u ∈M

L∑
s=1

(Tu)s ≤M
L∑
s=1

us

(
1−

L∑
r=1

ur

)
≤ M

4
.

Therefore we consider the dynamics in the following
simplex

MM =

{
u ∈M :

L∑
s=1

us ≤
M

4

}
.

1In the entire paper, we discard the superscript 1 of initial conditions, i.e. u1 = {u1
s}Ls=1 is denoted by u = {us}Ls=1.
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Sufficient conditions for this set to be invariant are
given in the following statement.

Proposition 2.1. For periodic or Neumann bound-
ary conditions, we have

(i) If 0 ≤ M ≤ 4 and 0 ≤ D ≤ m(4−M)/8, then
T (MM ) ⊂MM .

(ii) If M ≤ 4 and D > m(4−M)/8, or if M > 4
and D ≥ 0, then there exists u ∈MM such that
Tu 6∈ MM .

If M > 4, then the condition D ≤ m(4−M)/8
implies D < 0, which makes no sense. Statement
(ii) shows that for M > 4, though D ≥ 0, some
orbits have negative states, and the dynamics may
be meaningless.

Henceforth, we assume the inequalities in (i) to
be satisfied.

Proof.

(i) According to the inequalities at the begining
of this section, one has only to check the con-
ditions on D for (Tu)s to be positive. Since
D ≥ 0 for any u ∈MM we have

(Tu)s ≥ us
(
fs

(
1−

L∑
r=1

ur

)
− 2D

)

≥ us
(
m

4−M
4
− 2D

)
,

and consequently if D ≤ m(4−M)/8, then
(Tu)s ≥ 0 for all s.

(ii) If M ≤ 4 and D > m(4−M)/8, let r be such
that fr = m and let us = (M/4)δs, r for all s.
Then (Tu)r = (M/4)(m(4 −M)/4 − 2D) < 0.
If M > 4 and D ≥ 0, let us = M/4L for all s.
Then (Tu)s = fs(M/4L)(1− (M/4)) < 0. �

2.2. The trivial fixed point

For any value of the parameters, the configuration
u = 0 (i.e. us = 0 for all s) is a fixed point. It means
that if there is no population at some time, then no
population is created at the following times. More-
over, if the environment is not sufficiently appropri-
ate, then for any initial population, the subsequent
states asymptotically vanish. Indeed, if M < 1, 0 is
globally attracting. On the opposite, if the environ-
ment is sufficiently appropriate, then only special
(initial) populations may asymptotically die. In-
deed if M > 1, 0 is unstable. We now prove these
claims.

For any configuration u ∈ MM we have for
any t ≥ 0,

∑L
s=1(T tu)s ≤ M t∑L

s=1us and if
M < 1, then limt→∞

∑L
s=1(T tu)s = 0 and there-

fore limt→∞(T tu)s = 0 for all s.
Now if M > 1, let r be such that fr = M

and let us = εδs, r for all s where 0 < ε <
min{M/4, (M − 1)/M}. We have u ∈ MM and
‖Tu‖1 = Mε(1 − ε) > ε = ‖u‖1. This shows that 0
is unstable if M > 1.

Although M > 1, (the Jacobian at) 0 may have
some contracting directions. However, the stronger
condition m−4D > 1 ensures that all the directions
are expanding.

In fact, if L > 2, the Jacobian J at 0, for T
with periodic boundary conditions, has the follow-
ing expression

Js, r 6= 0 iff r = (s− 1) mod L, s

or (s+ 1) mod L, 1 ≤ s ≤ L ,

and Js,s = fs−2D, Js,(s−1) mod L = Js,(s+1) mod L =
D. (The notation r mod L stands for L−R where
R is the remainder of the Euclidean division r/L,
i.e. r = kL+R, k ∈ Z+, 0 ≤ R < L.) By the Levy–
Hadamard’s theorem (see e.g. [Bodewig, 1959]), the
eigenvalues of J are contained in the union of Ger-
shgorin’s disks

⋃L
s=1D(fs−2D, 2D) where D(x, y)

is the disk in C of radius y centered at x.
Still for L > 2, the Jacobian at 0, for T with

Neumann boundary conditions, is given by

Js, r 6= 0 iff



1 < s < L and r = s− 1,
s or s+ 1

s = 1 and r = 1 or 2

s = L and r = L− 1 or L

,

and Js, s = fs − 2D, Js, s−1 = Js, s+1 = D, 1 <
s < L, J1, 1 = f1 − D, JL, L = fL − D and
J1, 2 = JL−1, L = D. In this case, the union of

Gershgorin’s disks is D(f1 − D, D)
⋃⋃L−1

s=2D(fs −
2D, 2D)

⋃
D(fL −D, D).

If L = 2, we have for both boundary conditions

J =

(
f1 −D D

D f2 −D

)

and then the union of Gershgorin’s disks is D(f1 −
D, D)

⋃
D(f2 −D, D).
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Therefore, if m− 4D > 1, in all the cases, the
union of Gershgorin’s disks, and thus the eigenval-
ues of J , are outside D(0, 1), showing that 0 is
expanding.

3. The Diffusion-Free Regime

We investigate the case D = 0 as a starting
point. In this case, one can entirely characterize
the asymptotic behavior when taking into account
the property us = 0 implies uts = 0 for all t > 0.
The conclusion is at all the sites where the fitness is
not maximal (if any), there is extinction. In other
words, only populations living in the most favor-
able sites can survive. On the remaining sites, the
dynamics is governed by the logistic map.

Proposition 3.1. For D = 0 and any u ∈MM , we
have

fs < M =⇒ lim
t→∞

uts = 0 .

Proof. According to the comment preceeding the
statement, we can assume that for all s, fs > 0 and
uts > 0 for all t ∈ N. We obtain for any t > 0

uts′ =

(
fs′

fs

)t us′
us
uts .

Since uts ≤ 1, if fs′ < fs then limt→∞uts′ = 0 and
the proposition follows. �

The ratio of local populations on the remain-
ing site(s) of maximum fitness is constant and the
asymptotic dynamics is governed by the logistic
map. Indeed the following statement is a conse-
quence of Lemma 4.1 below.

Corollary 3.2. Assume fs = µ for all s and define
the sum U t0 =

∑L
s=1 u

t
s. We have

U t+1
0 = µU t0(1− U t0), t ≥ 0 .

If, in addition D = 0 and U t0 6= 0 for all t, then for
any s, the ratio uts/U

t
0 does not depend on t.

In particular, if the logistic map U0 7→ µU0(1−
U0) has a (hyperbolic) periodic orbit {U t0}t∈N differ-
ent from 0, then the system without diffusion has a

multiparameter family of marginally stable periodic
orbits, the states ut being given by

ut=

{
α1U

t
0, α2U

t
0, . . . , αL−1U

t
0,

(
1−

L−1∑
s=1

αs

)
U t0

}
,

t ∈ N ,
where αs ≥ 0 and

∑L−1
s=1 αs ≤ 1. The neutral di-

rections of perturbations correspond to changes in
the αs. The hyperbolic direction corresponds to
changes in U1

0 . This direction is stable (respectively
unstable) if the periodic orbit {U t0}t∈N is stable (re-
spectively unstable) for the logistic map.

4. The Homogeneous Case

We now consider the homogeneous case with dif-
fusion. In this case and with periodic boundary
conditions,2 under the Fourier transform, the sys-
tem becomes a skew-product with linear factors, the
base being the logistic map. As a consequence, if
the fitness fs = µ is such that x→ µx(1− x) has a
stable periodic orbit and if 0 < D < µ(4− µ)/8,
then for (Lebesgue-almost) any initial condition,
the asymptotic population is homogeneous and
periodic.

To see this recall that the Fourier transform in
RL is the mapping F such that Fu = U for any
u ∈ RL and (Fu)k =

∑L
s=1 use

(2iπks/L), 0 ≤ k < L.
Applying this mapping to T , we obtain the follow-
ing statement.

Lemma 4.1. The following conjugacy holds F ◦
T = G◦F , where G : F(RL)→ F(RL) is defined by

(GU)k =
1− U0

L

L−1∑
j=0

FjUk−j mod L + λkDUk ,

0 ≤ k < L ,

with λk = −4 sin2(πk/L) and F = Ff .

Using this conjugacy for a mapping T with ho-
mogeneous fitness Fj = F0δj, 0, one obtains a global
picture in the time-periodic case. We assume the
following conditions to hold.

(H) The fitness is homogeneous, fs = µ for all s,
and is such that the map x → µx(1 − x) has

2From now on, we impose periodic boundary conditions.
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an orbit {xt}t∈N with xt+τ = xt for some τ ∈ N
and any t ∈ N. The diffusion coefficient satis-
fies the inequalities 0 < D < µ(4− µ)/8.

These conditions allow to give a global picture
through the following technical result.

Proposition 4.2. If the conditions (H) hold, then
for any u ∈Mµ such that U0 = xt0 for some t0 ∈ N,
we have U t0 = xt+t0 for all t ∈ N and

lim
t→∞

max
0<k<L

|U tk| = 0 .

Proof. If the fitness is homogeneous, then (GU)0 =
µU0(1−U0). In this case, let {U t} be an orbit of G
such that U t0 = xt+t0 . By reindexing the sequence
{xt}, we can always assume t0 = 1. If U t0 = 0 for
some t, then U tk = 0 for all 1 ≤ k < L since u ∈ M
and then U t+1

k = 0 for all k and the result holds. If
U t0 never vanishes we have for any 1 ≤ t ≤ τ and
any 0 ≤ k < L

|U t+τk | =
τ−1∏
j=0

∣∣∣∣∣xt+j+1

xt+j
+ λkD

∣∣∣∣∣ |U tk| .
If k > 0 then −4 ≤ λk < 0. Thus if D(τ) =
1/2 min1≤t≤τ xt+1/xt > 0 and 0 < D < D(τ), then
for any k and any 1 ≤ t ≤ τ we have∣∣∣∣∣1 + λkD

xt

xt+1

∣∣∣∣∣ < 1 ,

and the periodicity of {xt} implies that

|U t+τk | =
τ−1∏
j=0

∣∣∣∣∣1 + λkD
xt

xt+1

∣∣∣∣∣ |U tk| .
Iterating we conclude that limt→∞ |U tk| = 0. Us-
ing the inequality U t0 ≤ µ/4 valid for t ∈ N we
obtain D(τ) ≥ µ(4− µ)/8 and the proposition
follows. �

If µ is such that max1≤t≤τ xt < µ/4 then one
may allow D = µ(4− µ)/8 in the statement, and
thus cover entirely the allowed region for D.

Recall that if the logistic map has a periodic
orbit, then it has a periodic orbit of smaller period
in the Sharkovsky ordering [Katok & Hasselblatt,
1995]. Moreover, for a given µ, at most one periodic
orbit is stable and its basin of attraction is of full

Lebesgue measure [Collet & Eckmann, 1981]. It is
then easy to conclude about the asymptotic dynam-
ics of T with homogeneous fitness if x→ µx(1− x)
has a periodic orbit.

Corollary 4.3. If the conditions (H) are satisfied,
then the following assertions hold.

(i) An orbit of T is periodic iff it is homogeneous
and its states are equal to the states of a pe-
riodic orbit of the logistic map. (In particular,
both periods are equal.)

(ii) If the latter is stable, then the corresponding
homogeneous periodic orbit of T is globally sta-
ble in the following sense. There exists a sub-
set S of [0, 1] with full Lebesgue measure such
that any orbit with initial condition in Mµ

and the sum of coordinates in S, asymptot-
ically converges to the homogeneous periodic
orbit.

(iii) If the periodic orbit of the logistic map is unsta-
ble and is not 0, then the corresponding homo-
geneous periodic orbit of T is hyperbolic with
a codimension 1 stable manifold. Let {Ek},
(Ek)j = δk, j, 0 ≤ j < L be the canonical basis
in F(RL). The tangent subspace spanned by E0

(resp. by {Ek}k>0) is an unstable (resp. stable)
subspace for G.3

It is simple to deduce from the definition of T
that the system has a homogeneous periodic orbit
when the logistic map has a periodic orbit. The
present result shows that, if the fitness is homoge-
neous fs = µ and 0 < D < µ(4− µ)/8, then no
nonhomogeneous orbit can be periodic and all the
(homogeneous) periodic orbits are periodic orbits of
the logistic map.

As an example, a schematic phase portrait in
the case of periodic orbits of period 2 is represented
in Fig. 1. This picture shows the stable and un-
stable homogeneous periodic orbits and the corre-
sponding invariant directions. As given by Proposi-
tion 4.2, the unstable manifolds corresponding to
perturbations of the Fourier modes Uk, k > 0,
are hyperplanes orthogonal to the direction U0.
In the picture, they are represented by straight
lines.

Notice that the damping of the modes {Uk}L−1
k=1

holds, not only for initial conditions in F(Mµ)

but also for any initial condition with {Uk}L−1
k=1 ∈

CL−1.

3If D = 0, the subspace spanned by {Ek}k>0 is precisely the marginal one (see Sec. 3 ).
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Fig. 1. The phase portrait of T 2 in the homogeneous case
with periodic boundary conditions and diffusion. The corre-
sponding logistic map as a periodic orbit of period 2.

5. Periodic Fitnesses

An extension of the previous section is to consider
(space) periodic fitnesses. In this case, one also ob-
tains a skew-product system with linear factors, act-
ing on higher dimensional variables, and the results
are similar to those obtained with homogeneous fit-
nesses. The problem is that we do not know in ad-
vance if the system has space-time periodic orbits
(inMM ) as we knew the existence of homogeneous
periodic ones.

To begin, we suppose the existence of p ∈ N,
1 < p < L such that p|L and we consider a p-
periodic fitness, i.e. fs+p = fs for all s. (We assume
p is the minimal period.) Equivalently we assume
that if k 6= j(L/p) for all 0 ≤ j < p then Fk = 0.

Now for 0 ≤ n < L/p we define Wn =

(Un+jL/p)
p−1
j=0 and we endow the corresponding

space of vectors W = {Wj}p−1
j=0 ∈ Cp with the

`1-norm. The map G induces the following dy-
namics W t+1

0 = AF (W t
0) and for n > 0 W t+1

n =

AF, n,Ut0
(W t

n) where the maps write

(AF (W ))j =
1−W0

L

p−1∑
k=0

FkL
p
Wj−k mod p

+ λj L
p
DWj, 0 ≤ j < p ,

and

(AF, n,U0(W ))j =
1− U0

L

p−1∑
k=0

FkL
p
Wj−k mod p

+ λn+j L
p
DWj , 0 ≤ j < p ,

The space-time periodic orbits are obtained using a
continuation argument, and are shown to have spa-
tial period not larger than p, and to have the same
stability properties as the original homogeneous
periodic orbits.

Proposition 5.1. If the conditions (H) are
satisfied, then the following statements hold.

(i) There exists ε0 > 0 such that for any 0 ≤ ε < ε0

and any f such that fs+p = fs for all s and∑L
s=1 |fs − µ| < ε, the corresponding map AF

has a τ -periodic orbit, denoted by {W t
0(ε)}t∈N.

(ii) There exists ε1 ≤ ε0 such that for any 0 ≤ ε <
ε1 this periodic orbit is locally stable (resp. hy-
perbolic ) if the corresponding logistic orbit is
stable (resp. unstable ).

(iii) There exists 0 < ε2 ≤ ε0 such that for any
0 ≤ ε < ε2 and any u ∈ MM such that
W0 = W t0

0 (ε) for some t0 ∈ N

lim
t→∞

max
0<n<L

p

‖W t
n‖ = 0 .

Proof.

(i) Let ÃF = AτF − Id where Id is the identity map

in Cp. The map ÃF is aC1 map and ÃF̂ (Ŵ 0
0 ) =

0 where F̂k = Lµδk, 0 and (Ŵ 0
0 )k = x0δk, 0. By

Corollary 4.3 for 0 < D < µ(4− µ)/8 the ho-

mogeneous orbit Û tk = xtδk, 0 is either globally
stable, and in particular linearly stable, or hy-
perbolic for Gτ with F = F̂ . In both cases
spec(DÃF̂ (Ŵ 0

0 )) 63 0 and then DÃF̂ (Ŵ 0
0 ) is

invertible. By the implicit function theorem
there exists ε0 > 0 such that for 0 < ε < ε0

and ‖F − F̂‖ < ε, the equation ÃF (W0) = 0
has a solution W 0

0 (ε), the unique continuation

of Ŵ 0
0 .

(ii) The spectrum of the differential DAτF (W t
0(ε))

is a continuous function of ε. Therefore the hy-
perbolic properties of W t

0(ε) are preserved un-
der if ε is sufficiently small.

In the case where the orbit of the logis-
tic map is stable, the periodic orbit of AF is
linearly stable for ε = 0. It is then linearly sta-
ble, and thus locally stable, provided ε is small
enough, say ε < ε1.

In the case where the orbit of the logistic
map is unstable, the periodic of AF is unsta-
ble for ε = 0. It is then unstable provided ε is
small enough, say also ε < ε1.
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(iii) From the proof of Proposition 4.2 we have for
any 1 ≤ t ≤ τ∥∥∥∥∥∥

τ−1∏
j=0

A
F̂ , n, Û

t+j
0

∥∥∥∥∥∥ ≤ δ ,
where δ = max1≤t≤τ max0<n<L/p max0≤j<p|1+

λkDx
t/xt+1| < 1. On the other hand, from (i)

we have for any t and n

lim
ε→0

∥∥∥∥∥∥
τ−1∏
j=0

A
F, n,U

t+j
0 (ε)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
τ−1∏
j=0

A
F̂ , n, Û

t+j
0

∥∥∥∥∥∥ .
Hence there exists ε2 > 0 such that if 0 ≤ ε <
ε2 then

max
1≤t≤τ

max
0<n<L

p

∥∥∥∥∥∥
τ−1∏
j=0

A
F, n,U

t+j
0 (ε)

∥∥∥∥∥∥ < 1 .

By induction, the limit in (iii) then holds for
0 ≤ ε < ε2. �

As in Corollary 4.3, the combination of (ii)
and (iii) shows that if {W t

0(ε)} is stable, any ini-
tial condition with W0 in the basin of attraction

of W t0
0 (ε) for some t0, asymptotically converges to

the orbit with W t
0 = W t+t0

0 (ε) and W t
n = 0 for

0 < n < L/p.
If one assumes m < µ < M for the pertubed

periodic fitness, then m(4−M)/8 < µ(4− µ)/8 so
that the condition D < µ(4− µ)/8 is satisfied once
D < m(4−M)/8. Moreover, if µ is such that
max1≤t≤τ xt < µ/4, then the continued orbit be-
longs to MM provided ε is sufficiently small.

The map AF can be viewed as a linear map
with a time-dependent parameter if one writes
(1− U0)/L instead of (1−W0)/L, i.e. AF (W ) =
WAF,U0 where AF, U0 is a p × p matrix. Under

this point of view, a periodic orbit of AF is

an eigenvector of
∏τ−1
j=0AF,Uj0

. If F 6= F̂ and

U0 6= U ′0, then the maps AF,U0 and AF,U ′0 and hence

the maps AF, n, U0 and AF, n, U ′0 do not commute.

Consequently the periodic orbit cannot be com-
posed of a common eigenvector of the A

F,U
j
0

as it

was the case for F = F̂ . This shows that the or-
bit’s shape changes in time, since the Fourier modes
change in a nonproportional way from a time step

to the following one. Also it is not sufficient to have
contraction at each step, i.e. ‖A

F, n,Uj0
‖ < ‖A

F, Uj0
‖

to ensure the damping of the modes Wn for n > 0

because
∏τ−1
j=0‖AF, Uj0‖ > 1. This explains the ar-

gument developed in the proof of (iii). In other
words one has to control the expansion rate over
the period, and not only at each step, to ensure
damping.

6. Concluding Remarks

A space-time discrete model for the dynamics of
populations on heterogenous lansdcape has been in-
troduced. Optimal conditions on the parameters
for the dynamics to be meaningful have been given.
The dynamics has then been investigated on the
corresponding invariant set.

The first result has shown that if the habitat
is not sufficiently appropriate, then the populations
asymptotically vanish.

When the fitness is sufficiently large, in the
diffusion-free regime, the model selects the most fa-
vorable sites. This is a characteristic effect of the
mean-field coupling. Indeed, in models such as in
[Cantrell & Cosner, 1991] or in coupled map lat-
tices [Kaneko, 1993], where the term 1 −∑r ur in
the definition of the dynamics is replaced by a local
term 1−ur, the limit D = 0 is an uncoupled system
(i.e. the dynamics at each site is independent of the
other sites), and the previous selection of best sites
does not occur.

When diffusion is added and the fitness is cho-
sen homogeneous and such that the system has a pe-
riodic orbit, the dynamics asymptotically becomes
homogeneous, the choice of the (phase of the) orbit
depending only on the sum

∑
s us of the compo-

nents of the initial conditions.
If the fitness is chosen homogeneous and such

that the logistic map has a dense orbit {xt}t∈N in
some set,4 then there exists a sequence {tj}j∈N with
tj ∈ N, such that xtj+1 < xtj . Using arguments sim-
ilar to those in the proof of Proposition 4.2, we con-
clude that if the initial condition is chosen such that
U1

0 = x1, then the sequence {∑L−1
k=1 |U

tj
k |} converges

to 0. In other words, the tj-states of such orbits
are more and more homogeneous when j increases.
However, the orbit may not converge to a homoge-
neous one because the sequence {tj+1− tj} may not
be bounded. In this case, the system then may be

4for instance, on the Feigenbaum’s accumulation point of bifurcation values of periodic orbits.
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intermittent, as described in [Platt et al., 1993]. If
that be the case, homogeneity of the fitness would
not be sufficient to force asymptotic homogeneity
in aperiodic situations.

Back to periodic cases, for space periodic fit-
nesses close to homogeneous ones, the results are
similar to those obtained with periodic fitnesses:
the asymptotic orbit always has the spatial peri-
odicity of the fitness. Moreover, though the fitness
is close to homogeneous, its heterogeneity provokes
important changes on the orbits’ shape within a
period, in the sense that various Fourier modes can
be excited independently at different times.

Finally, we notice that the results extend to
multidimensional lattices without any supplemen-
tary difficulty other than notations. However, they
do not extend easily to infinite lattices. Indeed, if
the phase space is chosen to be

MM =

{
u ∈ `1(Z) : us ≥ 0 and

∑
s∈Z

us ≤
M

4

}
,

and the fitness is a bounded configuration, i.e. f ∈
`∞(Z), then the condition for the existence of a dy-
namics, the analysis of the trivial fixed point (apart
the condition ensuring expansivity which requires
additional work) and the results in the diffusion-
free regime, adapted to the infinite-dimensional
case, extend. The problem comes from the Fourier
transform of T which does not decompose in the
convolution of Fourier transforms as in the finite-
dimensional case. This is because u ∈ `1 and
f ∈ `∞ do not belong to the same spaces. There-
fore, our analysis for homogeneous and periodic fit-
nesses does not apply and one has to carry out a
direct analysis to conclude in this case.
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