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2 Centre de Physique Théorique, CNRS & Universités de Marseille et de Toulon,
Luminy Case 907, 13288 Marseille Cedex 09, France
bastien@cpt.univ-mrs.fr

1 Introduction

This chapter deals with the study of travelling waves in discrete time spatially
extended systems with monotone dynamics. Such systems appear for instance
in alloy solidification, in population dynamics and in solid-state physics. Spe-
cial emphasis is made on the existence of travelling waves, on the uniqueness
of their velocity and on their relevance for the description of propagation
phenomena in such systems.

The first section deals with interfaces between two stable homogeneous
phases and their propagation in the form of fronts. The analysis applies to
systems of bistable one-dimensional maps coupled via the convolution with an
arbitrary distribution function [6]. This analysis completes a previous work on
piecewise affine bistable CML [3, 4] and its extension to systems of piecewise
affine one-dimensional maps coupled via convolution [5].

The second section deals with travelling waves in monotonous extended
systems driven by spatially periodic forces. These systems are inspired by dis-
crete time analogues of the dissipative dynamics of Frenkel-Kontorova models
(see the chapters by Floŕıa, Baesens and Gómez-Gardeñes and by Baesens for
such dynamics in continuous time). For such nonlinear systems, a dispersion
relation is obtained and the existence of travelling waves with arbitrary wave
and corresponding frequency is shown [7].

In spite of similarities with other works in the literature (see e.g. [12]) the
methods and, particularly, the formalism developed in the papers [3, 4, 5, 6,
7] are quite distinct and original. They encompass in a unified framework,
systems with continuous couplings and systems with discrete couplings. In
particular, changes in the dynamics of travelling waves (e.g. changes in shape
and in velocity) are described when the coupling continuously changes from
a discrete to a continuous one.
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2 Bistable Extended Maps

2.1 From Bistable CML to General Bistable Extended Mappings

As a starting point, we consider the basic model of CML

ut+1
s = (1− ε)f(ut

s) +
ε

2
(
f(ut

s−1) + f(ut
s+1)

)
(1)

where the real number ut
s ∈ [0, 1] represents the element of a lattice configu-

ration at discrete time t ∈ Z and discrete space s ∈ Z, and where ε ∈ [0, 1)
is the coupling strength. The map f is a bistable map from [0, 1] into itself.
A bistable map is a continuous increasing mapping from [0, 1] into itself with
exactly 3 fixed points, namely the points 0, c and 1. The points 0 and 1 are
attracting and c is unstable, see Fig. 1.

Fig. 1. A bistable map f

The evolution of a configuration under a bistable CML can be viewed as
a local force which impels convergence to some steady state (a stable fixed
point of f , either 0 or 1), followed by a diffusion process which takes the form
of the following linear operator

(Lu)s = (1− ε)us +
ε

2
(us+1 + us−1) . (2)

In particular, if at time t the configuration satisfies ut
s > c for all s ∈ Z, then

the evolution forces the configuration to converge uniformly to the fixed point
us = 1 for all s ∈ Z. On the opposite, if ut

s < c for all s ∈ Z, then the evolution
forces the configuration to converge uniformly to the fixed point us = 0 for
all s ∈ Z. Hence these fixed points represent stable phases of the dynamics.

The goal of this first section is to investigate the competition between
these two phases, namely the evolution of configurations which at some time
satisfy ut

s < c for sufficiently large negative s and ut
s > c for sufficiently large

positive s. Typically, the resulting motion is the invasion of one phase into
the other one, an invasion ruled by special solutions of (1), namely the fronts.
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A front of rational velocity p
q for the CML (1) is a configuration which

satisfies this evolution equation and the relations

∀s, t : ut+q
s = ut

s−p, lim
s→−∞

ut
s = 0 and lim

s→+∞
ut

s = 1 .

Before starting the investigation of such fronts, one may wonder about the
existence of fronts with irrational velocity in CML. A simple way to take into
account both rational and irrational velocities in a unique formalism is to
define a front of velocity v for the CML (1) as a configuration which satisfies

ut
s = φ (s− tv)

where φ : R → [0, 1] is a real function, called the front shape, which satisfies

lim
x→−∞

φ (x) = 0 and lim
x→+∞

φ (x) = 1 .

In other words the introduction of functions of real variable in CML allows
to study fronts with irrational velocities. However, using also this formalism
in the description of fronts with rational velocities has proved to be useful for
the global comprehension of fronts dynamics.

Early studies in this direction showed the existence of such fronts (of ra-
tional or irrational velocity depending on parameters) for (1) when f is a
discontinuous piecewise affine map with constant slope [3]. The existence of
fronts has also been shown in a CML with continuous piecewise affine bistable
local map and unidirectional coupling [1]. The proof in [3] is achieved by using
an explicit construction of the front shape for this CML. In order to show the
existence of such fronts when the local map f is an arbitrary (continuous)
bistable map, it is useful to fully generalise the model under consideration.

Actually, one may not restrict oneself to CML defined by (1) but also
consider more general CML whose iterations involve larger, even unbounded,
neighbourhoods. In addition, a reversal symmetric coupling is not required
and this assumption can be dropped. That is to say, one may consider the
following coupling operator

(Lu)s =
∑

n∈Z

�nus−n

where the coefficients �n are nonnegative real numbers such that
∑

n∈Z

�n = 1 .

Note that the coupling operator in (2) is recovered by choosing �−1 = �1 = ε
2 ,

�0 = 1− ε and �n = 0 for n /∈ {−1, 0, 1}.
Since the front shape is defined as a function of real variable, it is natural

to extend the action of the dynamics to the functions of real variable. That is
to say instead of the CML (1), we consider
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ut+1 (x) =
∑

n∈Z

�nf(ut (x− n)) .

where each ut is a function from R to [0, 1].
Of course, the dynamics of lattice configurations is recovered by consider-

ing the invariant set of functions which are constant on every interval [s, s+1)
where s ∈ Z. But such an extension provides an appropriate framework to the
front shape dynamics.

At this stage, an additional extension appears immediately. One may con-
sider diffusive linear operators of the form

(Lu) (x) =
∑

n∈Z

�nu (x− rn)

where the coefficients �n are nonnegative real numbers such that
∑

n∈Z
�n = 1

and rn are arbitrary real numbers (not only integers). An alternative way of
writing this operator is by using the convolution with a distribution function
h. Recall that such a convolution is defined by the Lebesgue-Stieltjes integral

(Lu) (x) = h ∗ u(x) :=
∫

R

u(x− y)dh(y) . (3)

That is to say, one may consider diffusive linear operator of the form Lu = h∗u.
In the previous case, the coupling operator can be written h ∗ u with the
distribution function h being given by h(x) =

∑
n∈Z

�nH (x− rn) where H is
the Heaviside function

H(x) =
{

0 if x < 0
1 if 0 ≤ x

Convolutions are not limited to discrete distribution functions and, as a final
extension, one may consider Lu = h ∗ u where h is an arbitrary distribu-
tion function, that is to say, any increasing function with the following limits
limx→−∞ h(x) = 0 and limx→+∞ h(x) = 1.

Therefore instead of only considering the dynamics of fronts in bistable
CML, we consider the dynamics of fronts in bistable (spatially) extended
maps whose iterations write

ut+1 = Fut = h ∗ f ◦ ut (4)

where h is an arbitrary distribution function and f an arbitrary bistable map.
(A further extension will be considered in Sect. 2.4.)

In order to have a well-defined convolution operator (3) for arbitrary distri-
bution function h, the functions u need be Borel measurable. Accordingly we
consider the dynamics (4) in the set B of Borel-measurable functions defined
on R with values in [0, 1].

It is noteworthy that the present formalism collects in a unique framework,
CML and classical models with continuous diffusive couplings. On one hand
the basic model of CML is recovered for
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h(x) = (1− ε)H(x) +
ε

2
(H(x+ 1) +H(x− 1)) .

On the other hand by choosing h to be the absolutely continuous distribution
function with heat kernel

h(x) =
∫ x

−∞
e−πy2

dy, x ∈ R

the map Fu(x) = (h ∗ f ◦ u)(x) =
∫

R
f ◦ u(x−y)e−πy2

dy gives an integral
formulation of a reaction-diffusion process in discrete time. Indeed, we then
have Fu(x) = wu(x, 1/4π), where wu(x, t) is the solution of the initial value
problem ∂wu

∂t = ∂2wu

∂x2 and wu (x, 0) = f ◦ u(x).
The rest of this section is dedicated to a sketch of the front analysis in

bistable extended maps defined by (4). This amounts to prove the existence
of a velocity v and of a front shape φ which solves the front equation

φ (x− v) = h ∗ f ◦ φ (x) .

2.2 Basic Properties

Every bistable extended map F defined by (4) has three basic properties.
The first property, which is intensively used in the analysis, is homogeneity.
Homogeneity is expressed by the relation

T vF = FT v for all v ∈ R (5)

where T v is the translation by v, namely the operator acting in B and defined
by T vu(x) = u(x− v) for all x ∈ R.

The second important property of F is continuity in the sense of pointwise
convergence, namely

∀x ∈ R lim
n→∞

un (x) = u (x) ⇒ ∀x ∈ R lim
n→∞

Fun (x) = Fu (x) . (6)

Finally, the third fundamental property is monotonicity, namely

u ≤ v ⇒ Fu ≤ Fv . (7)

Using these three properties we can deduce other important facts:

(a) Under the action of F , every increasing function is mapped into an in-
creasing function. Using the fact a function is increasing iff it lies above
any of its right translation, we have

∀δ > 0 T δu ≤ u ⇒ T δFu ≤ Fu .

(b) The map F commutes with the projection P� on left continuous func-
tions. Indeed this projection is defined by P�u(x) = lim

y→x
y<x

u(y) and for any

function in its domain, we have P�u(x) = lim
n→∞

u(x− 1
n ). Using homogene-

ity and continuity, we conclude that FP�u = P�Fu. Similarly, one shows
that F commutes with the projection Pr on right continuous functions.
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2.3 Results and Concepts

Existence of Fronts

As suggested before, any bistable extended map of the form (4) has fronts for
some velocity v. This is formally claimed in the following statement.

Theorem 2.1. For any distribution function h and any bistable map f , there
exists a velocity v ∈ R and an increasing function φ with the following limits
limx→−∞ φ(x) = 0 and limx→+∞ φ(x) = 1 which solves the front equation
T vφ = h ∗ f ◦ φ.

The proof of this Theorem is sketched in Sect. 2.5. The proof is accomplished
by a construction of an increasing function φ with the desired properties for
a chosen velocity v.

Note that monotonicity of the front shape φ is not imposed by the front
equation. Indeed in some cases (e.g. in weakly coupled CML or in strongly
unidirectionally coupled CML), it may happen that a bistable extended map
also has fronts with non monotonous shape.

Moreover, uniqueness of monotonous shape cannot be expected in general.
There are examples of bistable CML with several monotone front shapes which
cannot be identified by applying translations.

Bistable Regular Maps and the Uniqueness of Front Velocity

In spite of the front shape need not be unique, one may wonder about the
uniqueness of the velocity. It turns out that this uniqueness holds provided
that the map f is so-called regular, a fairly general situation. Indeed, a bistable
map f is said to be regular if it is a weak contraction in the neighbourhoods
of the stable fixed points (see Fig. 2), i.e. if we have

∃δ > 0 [x, y ∈ (0, δ) or x, y ∈ (1− δ, 1)] ⇒ |f (x)− f (y)| ≤ |x− y| .

That a bistable map be regular is a quite mild condition relies on Taylor
expansion. Indeed by using Taylor formula, one obtains the following sufficient
conditions for a bistable map f to be regular

f is analytic, or
f ∈ C1 and f ′ (0) < 1 and f ′ (1) < 1, or
f ∈ C2 and f ′′ (0) �= 0 and f ′′ (1) �= 0, or
f ∈ C3 and f ′′′ (0) �= 0 and f ′′′ (1) �= 0, and
. . .

Nevertheless, one can exhibit examples of non regular C∞ bistable maps.
With regularity provided, Theorem 2.1 can be completed by an assertion

on velocity uniqueness.
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Fig. 2. Bistable regular and non regular local maps

Theorem 2.2. For any distribution function h and any regular bistable map
f , there exists a unique velocity v ∈ R and an increasing function φ with the
following limits limx→−∞ φ(x) = 0 and limx→+∞ φ(x) = 1 which solves the
front equation T vφ = h ∗ f ◦ φ.

Hausdorff Distance of Increasing Functions

Uniqueness of the front velocity in extended systems with regular bistable
maps naturally addresses the question of the dependence of this velocity on
the local map and on the coupling operator, i.e. the dependence of v(f, h) on
f and on h.

The dependence under consideration here is continuity with changes in f
and in h. In order to address this problem, adequate notions of convergence
both for local maps f and for distribution functions h need to be introduced.

As far as local maps are concerned, convergence is understood in the point-
wise sense, i.e. {fn} converges to f iff limn→∞ fn(x) = f(x) for all x ∈ [0, 1].

As far as distribution functions are concerned, the convergence is ruled by
a distance in the set of (right continuous) increasing functions. The distance
between two distribution functions h and h′ is given by

d(h, h′) = inf{ε > 0 : h(x− ε)− ε ≤ h′(x) ≤ h(x+ ε) + ε, ∀x ∈ R } . (8)

For this distance, the ball of radius ε centred at h is the set of functions for
which the graph lies in the band of width 2

√
2ε in the direction of the line

y = −x around the graph Gh of h. The graph of h is defined by

Gh = {(x, y) : P�h (x) ≤ y ≤ Prh (x)} .
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In fact it is not difficult to show that this distance is the Hausdorff distance
restricted to graphs of such functions:

d(h, h′) = max
{

sup
z1∈Gh

(

inf
z2∈Gh′

‖z1 − z2‖
)

, sup
z1∈Gh′

(

inf
z2∈Gh

‖z1 − z2‖
)}

where the R
2 norm ‖.‖ is given by ‖(x, y)‖ = max {|x| , |y|}.

By using relation (8), one shows that the convergence with respect to the
distance d(·, ·) is equivalent to the convergence at all continuity points, the
usual convergence of distribution functions [10]. Precisely, we have
limn→∞ d(hn, h) = 0 iff limn→∞ hn(x) = h(x) for all x where h is contin-
uous [6].

The advantage of such a distance is that it allows continuous distribution
functions to converge to discontinuous ones and vice-versa. As a particular
consequence, changes in front velocity can be analysed when continuously
passing from a model with continuous diffusive operator to a model with
discrete diffusive operator (and vice-versa).

Continuity of the Front Velocity

The continuous dependence of the front velocity with respect both to the
local map and to the distribution function is given by the following statement.
Assume that f is regular and let v(f, h) be the unique front velocity of the
mapping Fu = h ∗ f ◦ u.

Theorem 2.3. Let {fn}n∈N be a sequence of regular bistable maps which con-
verges pointwise to a bistable regular map f . Let {hn}n∈N be a sequence of dis-
tribution functions and h be a distribution function such that lim

n→∞
d(hn, h) =

0. Then lim
n→∞

v(fn, hn) = v(f, h).

In particular, the front velocity varies continuously with any parameter of
the local map (provided that the map pointwise depends continuously on its
parameter(s)) and with any coupling parameter (provided the distribution
function depends continuously on this parameter). For instance, in the CML
defined by (1), the front velocity depends continuously on ε.

A special consequence of this result is the existence of fronts with irrational
velocity (for appropriate value of ε) in any CML (1) for which the front velocity
is not constant when ε moves in [0, 1].

As suggested before, Theorem 2.3 contains the claim that the front velocity
of an extended bistable map with infinite range coupling can be approximated
to arbitrary accuracy by the front velocity of an extended bistable map with
finite range discrete coupling, and vice-versa.
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Interfaces and Reference Centres Ja(ψ)

Once the existence of front has been established, the natural question to ad-
dress is their Lyapunov stability. Lyapunov stability of fronts is an elaborated
question which lies beyond the scope of this chapter.

In this section we provide some information about the dynamics of con-
figurations which need not be monotone, nor need to cross once the unstable
fixed point c of f . These configurations are called interfaces. An interface is
a function u ∈ B such that there exists c− ∈ (0, c), c+ ∈ (c, 1) and j1 ≤ j2 ∈ R

so that u(x) ≤ c− if x ≤ j1 and u(x) ≥ c+ if x ≥ j2 (see Fig. 3 for an example
of an interface crossing several times the point c.)

Fig. 3. An interface function u

Interfaces possess the following dynamical properties. If u is an interface,
then every iteration F tu (t ≥ 0) is an interface. Moreover, the numbers c−
(resp. c+) can be chosen arbitrarily near to 0 (resp. 1) provided that t is
chosen (accordingly) large enough.

As shown below, the asymptotic dynamical property shared by all inter-
faces is a unique propagation velocity, the front velocity of course.

In order to compute this velocity, the interface location at each time is
measured according to a reference threshold a. We introduce the reference
centre of an interface u as the smallest point at which the function is not
smaller than a, i.e.

Ja(u) = inf {x ∈ R : u(x) ≥ a} .

In the case where this quantity is finite, by applying a translation, the function
can be centred at 0. Indeed, we have Ja(T−Ja(u)u) = 0.

Velocity of Interfaces

According to the previous dynamical property, for any interface and any
a ∈ (0, 1), the quantity Ja(F tu) is finite for all t sufficiently large. The next
statement claims that any interface has asymptotically the front velocity, no
matter the initial number of crossing the level c is.
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Theorem 2.4. Let h be a distribution function and let f be a regular bistable
map. For every interface u and every a ∈ (0, 1), we have

lim
t→+∞

Ja(F tu)
t

= v(f, h) .

Needless to say that the front velocity is an important characteristic of ex-
tended bistable map. It plays a similar role to the one played by the rotation
number in circle maps.

2.4 Generalisation

The results on front dynamics extend to linear convex combinations of maps of
the form Fu = h∗f ◦u. An interesting application of such an extension resides
in lattice dynamical systems as introduced in the chapter by Bunimovich in
this volume.

Instead of the map F defined by (4) we now consider the map F defined
by

Fu =
∑

k∈N

akhk ∗ fk ◦ u, u ∈ B .

Here the numbers ak ≥ 0 and
∑

k∈N
ak = 1. The functions hk are distributions

functions and the maps fk are continuous increasing maps defined on [0, 1]
such that there exists c ∈ (0, 1) so that for every k ∈ N we have

fk(x) ≤ x if 0 ≤ x ≤ c and x ≤ fk(x) if c ≤ x ≤ 1 .

Moreover, we assume that the map

f =
∑

k∈N

akfk

is bistable. Its unstable fixed point is then c.
In addition, we say that the map F is regular if there exists δ > 0 such

that for every k ∈ N we have

|fk(x)− fk(y)| ≤ |x− y| if x, y ∈ (0, δ) or if x, y ∈ (1− δ, 1) .

All previous results on existence of fronts (Theorem 2.1), uniqueness of the
velocity (Theorem 2.2), continuous dependence of the velocity on the parame-
ters (Theorem 2.3) and existence and uniqueness of the velocity of interfaces
(Theorem 4) extend to the present mapping F .

Example. Lattice dynamical system. Let ε ∈ (0, 1) and f be a regular bistable
map such that the map f0 defined on [0, 1] by f0(x) = f(x)−εx

1−ε is increasing.
Let f1(x) = x, a0 = 1 − ε, a1 = ε, ak = 0 if k > 1, h0 = H and h1 =
1
2 (T 1H + T−1H).

The map

Fu(x) =
∑

k∈N

akhk ∗ fk ◦ u(x) = f ◦ u(x) +
ε

2
(u(x− 1)− 2u(x) + u(x+ 1))

satisfies the desired properties and is regular.
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2.5 Sketch of the Proof of Existence of Fronts

This section presents a brief description of the proof of front existence. The
complete proof is given in [6].

The first step consists in introducing subfronts, that is to say increasing
functions which satisfy the inequality Fu ≤ T vu. To be precise, let I ⊂ B
be the subset composed of increasing functions, let v ∈ R and c+ ∈ (c, 1).
Consider the set of subfronts of velocity v defined by

Sv,c+ =
{
ψ ∈ I : Fψ ≤ T vψ and Jc+(ψ) = 0

}
.

If Sv,c+ is not empty, consider the function

ηv(x) = inf
u∈Sv,c+

u(x), x ∈ R .

It turns out that ηv ∈ Sv,c+ and therefore ηv is a minimal sub-front of velocity
v.

In a second step, we consider the maximal sub-fronts velocity

v̄ = sup
{
v ∈ R : Sv,c+ �= ∅

}

and we consider the minimal sub-front of maximal velocity, namely ηv̄. (This
minimal subfront exists because one shows that Sv̄,c+ �= ∅.) The construction
suggests ηv̄ is a good candidate to solving the front equation. However, this
is not always the case.

In order to construct a front shape from this function, we start by com-
puting iterates Fnηv̄. We translate them so that they all be centred at 0 (i.e.
Jc+(T−jnFnηv̄) = 0 where jn = Jc+(Fnηv̄)) and we look for a limit function.
That is to say, we consider the sequence {T−jnFnηv̄}n∈N.

Then we prove that lim infn→∞ (jn+m − jn) = mv̄. This property is em-
ployed together with an arithmetical lemma in order to ensure the existence
of a strictly increasing sequence {nk} such that for all m we have

lim
k→∞

(jnk+m − jnk
) = mv̄ .

By Helly’s Selection Theorem3 the sequence {T−jnkFnkηv̄}k∈N has a conver-
gent subsequence which, without loss of generality, we assume to be the same
sequence, i.e. there exists η∞ ∈ Sv̄,c+ such that

η∞ = lim
k→∞

T−jnkFnkηv̄ .

3 Helly’s Selection Theorem states that if {fn} is a sequence of monotonically in-
creasing functions on R with 0 ≤ fn (x) ≤ 1 for all x and n, then there is a
function f and a sequence {nk} such that

f (x) = lim
k→∞

fnk (x) for every x ∈ R .

See Chap. 10 in [9] or exercise 13, Chap. 7 in [11].
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Now we consider the sequence T−mv̄Fmη∞. Since η∞ ∈ Sv̄,c+ , this sequence
has the following property

ηv̄ ≤ T−(m+1)v̄Fm+1η∞ ≤ T−mv̄Fmη∞ .

Therefore it converges to a limit function

φ = lim
m→∞

T−mv̄Fmη∞ .

By continuity of F , the function φ ∈ I satisfies the front equation T v̄φ =
Fφ and is such that limx→+∞ φ(x) = 1. However, one cannot conclude that
limx→−∞ φ(x) = 0 but only that

lim
x→−∞

φ (x) ∈ {0, c} .

In order to complete the proof, one first shows that if f and h are such that

f ′ (c) = +∞ and inf {x ∈ R : h(x) > 0} = −∞

then limx→−∞ φ (x) = 0 and the existence of fronts is proved in this case. In
the general case, the conclusion follows

(1) by showing that any f (resp. h) can be approximated to arbitrary
accuracy by local maps (resp. distribution functions) satisfying the previous
assumptions and

(2) by showing that the limit of a sequence of extended bistable maps
having fronts with converging velocities possesses itself a front (with the limit
velocity).

3 Extended Circle Maps

3.1 Frenkel-Kontorova Models and Extended Circle Maps

One-dimensional chains of particles coupled by springs and placed in a peri-
odic potential are represented by doubly infinite real sequences {us}s∈Z (us

represents the location of the s-th particle). In the dissipative limit, the dy-
namics of such chains, when driven by a constant force, are described by the
gradient of a Frenkel-Kontorova (FK) functional (see the chapters by Floŕıa,
Baesens and Gómez-Gardeñes and by Baesens). It means that the sequences
evolve according to the differential equation

∂tus = V ′(us) +D + (us−1 − 2us + us+1)

where the potential V is periodic V (x+ 1) = V (x) and D ∈ R is the driving
force.
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This equation is a special case of the following one

∂tus = − (g′2(us−1, us) + g′1(us, us+1)) +D

where g : R
2 → R is a C2 function satisfying the periodic condition

g(x+ 1, y + 1) = g(x, y)

and such that the partial derivative g′′12(x, y) ≤ 0 for all (x, y) ∈ R
2 (twist

condition).
This section concerns the dynamics of discrete time analogues of such

equation; namely discrete time dynamical system defined by

ut+1
s = ut

s − ε
(
g′2(u

t
s−1, u

t
s) + g′1(u

t
s, u

t
s+1)

)
+ εD (9)

where t ∈ Z and ε > 0 is the discretisation step. Special emphasis will be
put on travelling wave solutions whose shape is an increasing periodic (in a
suitable sense) function. Precisely, our concern will be with orbits given by

ut
s = ψ (αs+ ναt) (10)

where ψ is an increasing function such that ψ (x+ 1) = ψ (x)+1. The number
α > 0 is called the mean spacing (wave number) of the wave and the number
να is called the rotation number (frequency).

A special case of travelling waves is when να = 0 for which the configu-
rations are stationary. In particular, according to relation (9), the existence
of such stationary configuration for D = 0 is nothing else than the famous
Aubry-Mather Theorem [8].

Just as done for bistable extended maps, we extend the analysis to sys-
tems with continuous space variable. That is to say, rather than considering
sequences us : Z → R, we consider functions u(x) : R → R. In this larger
phase space, the dynamics writes ut+1 = Fut where

(Fu) (x) = u (x)− ε (g′2(u (x− 1) , u (x)) + g′1(u (x) , u (x+ 1))) + εD . (11)

In order to deal with separate sets of travelling waves for distinct mean
spacing, for each α > 0, we consider the set (see Fig. 4)

Nα =
{
u : u : R → R, u increasing and u(x+ 1

α ) = u (x) + 1
}
.

Since for any function ψ satisfying ψ(x+ 1) = ψ(x) + 1 the function φ (x) :=
ψ (αx) belongs to Nα, the travelling wave solutions (10) can be written as
follows

ut = T− να
α tφ

where φ ∈ Nα and T v is again the translation operator defined by T vu(x) =
u(x− v).



278 R. Coutinho and B. Fernandez

Fig. 4. A function u in Nα

Note that horizontal translations in Nα can be viewed as vertical ones.
So it is indifferent to view travelling waves either as propagating vertically or
horizontally.

Just as bistable extended map do, the maps defined (11) commute with
translations and are continuous with respect to pointwise convergence. In
addition they can be shown to be increasing.

Lemma 3.1. [7] For every L > 0, there exists εL > 0 such that, for every
ε ∈ (0, εL], α ∈ (0, L] and u, v ∈ Nα, we have u ≤ v implies Fu ≤ Fv.

At once, the map F satisfies the following properties

(a) For some α > 0, or for all α > 0, F maps Nα into Nα.
(b) F is increasing, u ≤ v ⇒ Fu ≤ Fv.
(c) F is periodic, F (u+ 1) = F (u) + 1.
(d) F is homogeneous, T vF = FT v ∀v ∈ R.
(e) F is continuous, ∀x ∈ R lim

n→∞
un (x) = u (x) ⇒ ∀x ∈ R lim

n→∞
Fun (x) =

Fu (x) .

The results in this section, in particular the uniqueness of rotation number
(Proposition 3.1) and the existence of travelling waves (Theorem 3.1), hold
for any map F which satisfies the properties a) to e). Such maps are called
(spatially) extended circle maps.

The properties b), c) and d) imply that every set Nα on which an extended
circle map F is defined is invariant under the action of F . So the dynamics is
well-defined.

The dynamics of functions with negative mean spacing (i.e.Nα with α < 0)
is also included in this framework. Indeed, it suffices to apply the inversion
x �→ −x and to analyse the subsequent extended circle map. In the case α = 0,
the dynamics reduces to that of a lift of circle map (see below).
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3.2 Coupled Lift of Circle Maps

A special example of extended circle map are the mappings which are formally
identical to the bistable extended maps of the first section, namely

Fu = h ∗ f ◦ u . (12)

However f is now a lift of a circle map (i.e. f is increasing, continuous map
from R into itself for which f(x + 1) = f(x) + 1 for all x) and h is now a
distribution function satisfying

∫
R
|x|dh(x) < ∞ [7]. Such maps cannot be

interpreted as (extended) lift of coupled circle maps. Indeed for any integer
function n : R → N, we have F (u + n) = F (u) + h ∗ n. But in general the
function h ∗ n is not an integer function.

Anyway, coupled lift of circle maps (with discrete distribution function)
can be interpreted as models of chains diffusively coupled particles in titled
periodic potential (Frenkel-Kontorova models).

In the uncoupled case h = H (where H is the Heaviside function) that is
to say in the case where Fu = f ◦ u, then Theorem 3.1 applied with α = 1
states the existence of a semi-conjugacy to some translation for any lift of
circle map f . Indeed, it states the existence of a lift of a circle map φ ∈ N1

such that f ◦ φ = T−ν1φ where ν1 is the rotation number of F in N1 (see
Proposition 3.1), the rotation number of f indeed.

3.3 Rotation Number of Extended Circle Maps

Unlike the analysis of fronts in bistable extended map for which the uniqueness
of the velocity has been shown once a solution has been exhibited, the proof
of existence of travelling waves with periodic shape begins with uniqueness of
the rotation number.

In addition, the proof itself is simpler because the set Nα containing the
solutions are compact. This is also a reason why the proof extends to arbitrary
circle maps F and holds not only for maps of the form h ∗ f ◦ u (or their
extension

∑
k hk ∗ fk ◦ u).

Horizontal displacements will be measured by using the reference zero:

J(u) := J0(u) = inf{x ∈ R : u(x) ≥ 0}

which is finite for every u ∈ Nα with α > 0 and satisfies the properties
J(T νu) = J(u) + ν and u ≤ v implies J(u) ≥ J(v).

The existence and the uniqueness of the rotation number for extended
circle maps is given in the following statement.

Proposition 3.1. Let F be an extended circle map defined on Nα for some
α > 0. For every u ∈ Nα and every x ∈ R, the limit να := limt→∞

F tu(x)
t

exists and does not depend on x nor on u.
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Furthermore, we have
∣
∣J(F tu) + ναt

α

∣
∣ ≤ 2

α for all t ∈ N . Hence

να = lim
t→∞

F tu(x)
t

=− α lim
t→∞

J(F tu)
t

·

The existence of the rotation number να = limt→∞
F tu(x)

t extends to func-
tions which need not be periodic but which can be sandwiched between two
functions in Nα, see [7] for more details.

Proof: Every function u ∈ Nα satisfies the inequalities

ϕ−
α ≤ T−J(u)u < ϕ+

α (13)

where u < v means u ≤ v and u �= v and where the functions ϕ−
α and ϕ+

α are
defined by ϕ−

α (x) = (αx) − 1 and ϕ+
α = *αx++ 1 for all x ∈ R, see Fig. 5.

Fig. 5. The functions ϕ−
α and ϕ+

α

The quantity jt := J(F tϕ−
α ) is finite for every t ∈ N. The inequalities (13)

imply ϕ−
α ≤ T−jtF tϕ−

α and T−(jt− 1
α )F tϕ+

α < ϕ+
α because J(F tϕ+

α ) = jt − 1
α

for all t. Applying F s, we obtain

F sϕ−
α ≤ T−jtF t+sϕ−

α and T−(jt− 1
α )F t+sϕ+

α ≤ F sϕ+
α

and then js ≥ jt+s− jt and (jt+s− 1
α )− (jt− 1

α ) ≥ js− 1
α . The sub-additivity

of the sequence {jt}t∈N and the super-additivity of {jt − 1
α}t∈N imply that

the following limit exists and is finite

lim
t→∞

jt
t

= inf
t>0

jt
t

= sup
t>0

jt − 1
α

t
·

We denote this quantity by −να

α . A consequence is the following important
inequality
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−να

α
t ≤ jt ≤ −

να

α
t+

1
α
, ∀t ∈ N .

We are now about to prove the existence and uniqueness of the rotation num-
ber for the function ϕ−

α . By applying the inequalities (13) to the function
F tϕ−

α , we obtain

ϕ−
α − (jtα) = T

1
α �jtα�ϕ−

α ≤ F tϕ−
α < T

1
α �jtα�ϕ+

α = ϕ+
α − *jtα+ .

As a consequence, for every x ∈ R we have

να = − lim
t→∞

�jtα�
t ≤ lim inf

t→∞
F tϕ−

α (x)
t ≤ lim sup

t→∞

F tϕ−
α (x)
t ≤ − lim

t→∞

(jtα)
t

= να

the rotation number associated with ϕ−
α exists and does not depend on x.

In addition, ϕ−
α + 1 ≤ ϕ+

α ≤ ϕ−
α + 2 and thus the rotation number also

exists and does not depend on x for the function ϕ+
α . Finally, by applying the

inequalities (13) we conclude the same results for any u ∈ Nα �

3.4 Existence of Travelling Waves

Proposition 3.1 claimed that every configuration in Nα propagates asymptot-
ically with a unique (horizontal) velocity. The main theorem below claims the
existence of a configuration which the action of F amounts to a translation
by −να/α.

Theorem 3.1. [7] Let F be an extended circle map defined on Nα for some
α > 0. There exists φ ∈ Nα such that Fφ = T− να

α φ.

The proof is similar to the proof of front existence. As said before, the main
difference resides in the compactness of Nα which considerably simplifies the
proof.

In a first step, we consider the set of sub-solutions of the travelling wave
equation. Given ν ∈ R, we define

S(ν) =
{
u ∈ Nα : T

ν
αFu ≤ u and J(u) = 0

}
.

Next we show the rotation number can be defined using these sets:

Lemma 3.2. να = inf {ν ∈ R : S(ν) �= ∅}.

Proof of the Lemma: Given t ∈ N, let the function ϕt be defined by

ϕt(x) = min
0≤s<t

{
T− s

t (jt− 1
α )F sϕ+

α (x)
}
, ∀x ∈ R

where jt and ϕ+
α were introduced in the proof of Proposition 3.1. The fact

that ϕ+
α ∈ Nα and the properties of F ensure that ϕt ∈ Nα for every t. Thus

all J(ϕt) are finite. Moreover, by monotony of F , we have T− 1
t (jt− 1

α )Fϕt ≤
T− s+1

t (jt− 1
α )F s+1ϕ+

α for every 0 ≤ s < t. This implies that
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T− 1
t (jt− 1

α )Fϕt ≤ min
1≤s≤t

T− s
t (jt− 1

α )F sϕ+
α ≤ min

0≤s<t
T− s

t (jt− 1
α )F sϕ+

α = ϕt

because T−(jt− 1
α )F tϕ+

α ≤ ϕ+
α as indicated by the right inequality (13). We

have shown that the set S(−α
t (jt − 1

α )) is not empty for every t > 0. There-
fore, we have

να = −α lim
t→∞

1
t

(

jt −
1
α

)

≥ inf {ν ∈ R : S(ν) �= ∅} .

On the other hand, we assume that u ∈ S(ν) �= ∅ for some ν ∈ R. Then
ϕ−

α ≤ u by relation (13) and thus F tϕ−
α ≤ F tu ≤ T− ν

α tu which implies
jt ≥ − ν

α t, i.e. ν ≥ −α jt

t for all t > 0. Consequently, we have

inf {ν ∈ R : S(ν) �= ∅} ≥ να .

�

As in the proof of front existence, the second step consists of considering
a minimal sub-solutions, namely we consider the function

ην(x) = inf
u∈S(ν)

u(x), ∀x ∈ R .

It turns out that S(να) �= ∅ and ηνα
∈ S(να).

In a third step, we consider the sequence
{
Tn να

α Fnηνα

}
n∈N

. By monotony
and homogeneity, we have

T (n+1) να
α Fn+1ηνα

≤ Tn να
α Fnηνα

, ∀n ∈ N .

In addition, one can show that T
1
αϕ−

α ≤ Tn να
α Fnηνα

and hence that the se-
quence is bounded from below. Consequently, this sequence converges point-
wise to the limit function φ ∈ Nα which satisfies Fφ = T−να/αφ. We refer to
[7] for more details.

3.5 Continuity of the Rotation Number

Just as the front velocity, the rotation number να varies continuously with
changes of extended circle maps (and in particular with their parameters).

For coupled lift of circle maps Fu = h ∗ f ◦ u, changes are the same as
before; namely pointwise convergence for the local map f and convergence in
the Hausdorff topology for the distribution function h (an additional condition
is needed to ensure that the distribution functions h satisfy

∫
R
|x| dh(x) <∞,

see Lemma 3.3 in [7]).
For the discrete time version (9) of the Frenkel-Kontorova model, a contin-

uous dependence with parameters and with the generating function has been
shown [7]. All these results are deduced from the following statement valid for
arbitrary extended circle maps. If limn→∞ supu∈Nα

d(Fn(u), F (u)) = 0 where
the distance d(·, ·) is the Hausdorff distance, then limn→∞ να(Fn) = να(F ).

In complement to continuity with respect to changes in the map, the ro-
tation number depends continuously on the mean spacing α. This is proved
by using bigger spaces Mα′,α′′ which contain Nα for every α′ ≤ α ≤ α′′.
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3.6 Extended Circle Maps with Vanishing Rotation Number

Recall that Aubry-Mather Theorem states that any Frenkel-Kontorova func-
tional possess stationary configurations for every mean spacing α [8].

In the present framework, this amounts to say that the map F defined by
(11) with D = 0 has, for every α, a fixed point in Nα. By Proposition 3.1 and
Theorem 3.1, this result would follow from the fact that να = 0 for all α.

It turns out that the property να = 0 for all α > 0 is not limited to the
model (11) with D = 0. As stated in the next statement, it extends to any
extended circle map satisfying some symmetry condition.

Theorem 3.2. If there exists a lift of a circle map f̃ such that the following
relation holds ∫ 1

α

0

(Fu− u)d(f̃ ◦ u) = 0 (14)

for every continuous function u ∈ Nα (α > 0), then the rotation number
να = 0.

The proof essentially relies on various properties of the Lebesgue-Stieltjes
integral [7]. The fact that the model (11) with D = 0 satisfies this property,
however, is elementary and claim in our final statement.

Proposition 3.2. For every generating function g, every α > 0, and every
ε > 0, the map

Fεu(x) = u(x)− ε (g′2(u(x− 1), u(x)) + g′1(u(x), u(x+ 1))) ∀x ∈ R ,

satisfies the condition (14) with f̃(x) = x.

Indeed by using T− 1
αu = u+ 1, we have

∫ 1
α

0

(Fεu− u)du

= −ε
∫ 1

α

0

g′2(u(x), u(x+ 1))du(x+ 1)− ε

∫ 1
α

0

g′1(u(x), u(x+ 1))du(x)

= −ε
∫ 1

α

0

dg(u(x), u(x+ 1)) = 0

for every continuous function u ∈ Nα.
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8. C. Golé, Symplectic twist maps, World Scientific (2001).
9. A. Kolmogorov and S. Fomin, Elements of the theory of functions and of func-

tional analysis, Mir (1976).
10. E. Lukacs, Characteristic functions, Hafner Publishing Co. (1970).
11. W. Rudin, Principles of mathematical analysis, 3rd edition, McGraw-Hill (1976).
12. H. Weinberger, Long-time behaviour of a class of biological models, SIAM J.

Math. Anal. 13 (1982) 353–396.


