## Erratum of the paper

## Topological properties of linearly coupled expanding maps lattices

Nonlinearity **13** (2000) 973–993

Valentin Afraimovich<sup>1</sup> and Bastien Fernandez<sup>2</sup>

July 27, 2001

<sup>1</sup>Instituto de Investigación en Communicación Optica UASLP Av. Karakorum 1470, Lomas 4ta sección San Luis Potosí, SLP México e-mail: valentin@cactus.iico.uaslp.mx

> <sup>2</sup>Centre de Physique Théorique CNRS Luminy Case 907 13288 Marseille CEDEX 09 France e-mail: bastien@cpt.univ-mrs.fr

## 1 Proof of Proposition 3.2

The proof of Proposition 3.2 is not correct because there are sets in  $\ell^{\infty}(\mathbb{Z})$  for which every one-dimensional canonical projection contains an interval, say  $I_s$ , but which do not cover the product of intervals  $\bigotimes_{s \in \mathbb{Z}} I_s$ . The

image of  $[0,1]^{\mathbb{Z}}$  by a convolution satisfying (H2) and (H3) is an example of such a set. This section is a proof, which we believe to be correct.

*Proof*: For each  $i \in \{1, \dots, N\}$ , let  $u^{(i)}$  be the middle point of  $f(I_i)$  and  $\delta_i = \frac{|f(I_i)|}{2}$ , i.e.

$$f(\mathbf{I}_i) = u^{(i)} + [-\delta_i, \delta_i].$$

For each i, the condition  $I_j \subset Int f(I_i)$  implies the existence of  $0 < \alpha_{i,j} < 1$  such that

$$I_j \subset u^{(i)} + [-\alpha_{i,j}\delta_i, \alpha_{i,j}\delta_i].$$

In other words, there exists  $0 < \alpha < 1$  such that for any  $\omega, \omega' \in \{1, \dots, N\}^{\mathbb{Z}}$  so that  $I_{\omega'_s} \subset \text{Int} f(I_{\omega_s}), s \in \mathbb{Z}$ , we have

$$I_{\omega'} \subset u^{\omega} + \bigotimes_{s \in \mathbb{Z}} [-\alpha \delta_{\omega_s}, \alpha \delta_{\omega_s}] \subset F(I_{\omega}),$$

where  $u_s^{\omega} = u^{(\omega_s)}$  for every s. The left inclusion shows that one only has to show that if  $\|\operatorname{Id} - L\|$  is sufficently small, we have

$$u^{\omega} + \bigotimes_{s \in \mathbb{Z}} [-\alpha \delta_{\omega_s}, \alpha \delta_{\omega_s}] \subset L \circ F(\mathcal{I}_{\omega}).$$

The latter is a consequence of the following result.

**Lemma 1.1** For any  $\gamma > 1$ , there exists  $\varepsilon_{\gamma} > 0$  such that for any coupling satisfying  $||Id - L|| < \varepsilon_{\gamma}$ ,  $L^{-1}$  exists and for arbitrary  $\omega = \{\omega_s\}_{s \in \mathbb{Z}} \in \{1, \dots, N\}^{\mathbb{Z}}$ , we have

$$L^{-1}(\bigotimes_{s\in\mathbb{Z}}[\delta_{\omega_s},\delta_{\omega_s}])\subset \bigotimes_{s\in\mathbb{Z}}[-\gamma\delta_{\omega_s},\gamma\delta_{\omega_s}].$$

Indeed, if  $\|\operatorname{Id} - L\| < \varepsilon_{\gamma}$ , then linearity implies that

$$L^{-1}(\bigotimes_{s\in\mathbb{Z}}[\alpha\delta_{\omega_s},\alpha\delta_{\omega_s}])\subset\bigotimes_{s\in\mathbb{Z}}[-\alpha\gamma\delta_{\omega_s},\alpha\gamma\delta_{\omega_s}].$$

Let  $1 < \gamma < \frac{1}{\alpha}$  and choose  $\varepsilon_{\gamma}$  smaller if necessary so that, in addition to the previous relation, the condition  $\|\mathrm{Id} - L\| < \varepsilon_{\gamma}$  implies

$$|(L^{-1}u^{\omega})_s - u^{\omega}_s| < (1 - \alpha \gamma)\delta_{\omega_s}, \quad s \in \mathbb{Z}.$$

Consequently, for any L such that  $\|\operatorname{Id} - L\| < \varepsilon_{\gamma}$ , we have

$$L^{-1}(u^{\omega} + \bigotimes_{s \in \mathbb{Z}} [-\alpha \delta_{\omega_s}, \alpha \delta_{\omega_s}]) \subset u^{\omega} + \bigotimes_{s \in \mathbb{Z}} [\delta_{\omega_s}, \delta_{\omega_s}] = F(\mathbf{I}_{\omega}),$$

from which the desired result follows by applying L.

Proof of the Lemma: In all the proof, we assume that  $\varepsilon_{\gamma} \leqslant 1$ . As a consequence,  $L^{-1}$  exists and is a convolution. Let  $\{\ell_n^{(-1)}\}_{n \in \mathbb{Z}}$  be the sequence representing  $L^{-1}$ . Assume that  $\ell_0^{(-1)} > 0$  and let  $\delta = \max_{1 \leqslant i \leqslant N} \delta_i$ .

Take any  $\omega \in \{1, \cdots, N\}^{\mathbb{Z}}$  and any  $u \in \bigotimes_{s \in \mathbb{Z}} [\delta_{\omega_s}, \delta_{\omega_s}]$ . We have

$$(L^{-1}u)_s \leqslant \ell_0^{(-1)}\delta_{\omega_s} + \delta \sum_{n \neq 0} |\ell_n^{(-1)}|, \quad s \in \mathbb{Z}.$$

We use this bound to show that

$$(L^{-1}u)_s \leqslant \gamma \delta_{\omega_s}, \quad s \in \mathbb{Z}, \tag{1}$$

where  $\gamma > 1$  is given and provided that  $\|\operatorname{Id} - L\|$  is sufficiently small.

Given  $\gamma > 1$  and  $i \in \{1, \dots, N\}$ , there exists  $\eta_i > 0$  such that

$$(1 + \eta_i)\delta_i + \delta\eta_i \leqslant \gamma\delta_i$$
.

Now, we have

$$\ell_0^{(-1)} \leqslant \sum_{n \in \mathbb{Z}} |\ell_n^{(-1)}| = ||L^{-1}|| \leqslant \sum_{k \in \mathbb{Z}^+} ||\mathrm{Id} - L||^k \leqslant \frac{1}{1 - \varepsilon},$$

whenever  $\|\operatorname{Id} - L\| \leq \varepsilon$ . Consequently, there exists  $\varepsilon_2 > 0$  such that  $\|\operatorname{Id} - L\| \leq \varepsilon_2$  implies that

$$\ell_0^{(-1)} \leqslant \min_{1 \leqslant i \leqslant N} 1 + \eta_i$$

Moreover, estimating the sequence  $\{\ell_n^{(-1)}\}$  using the Neumann series defining  $L^{-1}$ , we obtain

$$\ell_0^{(-1)} \geqslant 1 - \sum_{k \in \mathbb{N}} \| \operatorname{Id} - L \|^k \geqslant \frac{1 - 2\varepsilon}{1 - \varepsilon},$$

whenever  $\|\operatorname{Id} - L\| \leq \varepsilon$ . (This shows that  $\ell_0^{(-1)} > 0$  when  $\varepsilon < \frac{1}{2}$ ). Consequently, there exists  $\varepsilon_3 > 0$  such that  $\|\operatorname{Id} - L\| \leq \varepsilon_3$  implies that

$$\sum_{n \neq 0} |\ell_n^{(-1)}| = ||L^{-1}|| - \ell_0^{(-1)} \leqslant \frac{2\varepsilon_3}{1 - \varepsilon_3} \leqslant \min_{1 \leqslant i \leqslant N} \eta_i.$$

We conclude that the inequality (1) holds when  $\|\operatorname{Id} - L\| < \varepsilon_{\alpha} = \min\{1, \frac{1}{2}, \varepsilon_{2}, \varepsilon_{3}\}.$ 

Using linearity, we obtain corresponding lower bound for  $(L^{-1}u)_s$  and the Lemma follows.

## 2 Proof of Proposition 3.3

In the proof of Proposition 3.3, the intersections

$$\mathcal{F}_{f,L}^{-t}(\mathbf{I}_{\omega^t+1})\cap\mathcal{F}_{f,L}^{-t+1}(\mathbf{I}_{\omega^t})\neq\emptyset.$$

do not suffice to ensure that  $J_{\omega^1,\dots,\omega^t}=\bigcap_{k=1}^t\mathcal{F}_{f,L}^{-k+1}(I_{\omega^k})$  is non-empty. However, a classical argument shows that when the following inclusions hold (which is the case by Proposition 3.2)

$$I_{\omega^{t+1}} \subset \mathcal{F}_{f,L}(I_{\omega^t}), \quad t \in \mathbb{N},$$

every admissible cylinder  $\mathbf{J}_{\omega^1,\cdots,\omega^t}$  is non-empty.